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PREFACE

THIS traict is intended to present a precise account of the elementary

differential properties of plane curves. The matter contained is in

no sense new, but a suitable connected treatment in the English

language has not been available.

As a result, a number of interesting misconceptions are current in

English text books. It is sufficient to mention two somewhat striking

examples, (a) According to the ordinary definition of an envelope, as

the locus of the limits of points of intersection of neighbouring curves,

a curve is not the envelope of its circles of curvature, for neighbouring

circles of curvature do not intersect. (6) The definitions of an

asymptote—(1) a straight line, the distance from which of a point on

the curve tends to zero as the point tends to infinity
; (2) the limit of

a tangent to the curve, whose point of contact tends to infinity—are

not equivalent. The curve may have an asymptote according to the

former definition, and the tangent may exist at every point, but have

no limit as its point of contact tends to infinity.

The subjects dealt with, and the general method of treatment, are

similar to those of the usual chapters on geometry in any Cours

dJAnalyse, except that in general plane curves alone are considered. At

the same time extensions to three dimensions are made in a somewhat

arbitrary selection of places, where the extension is immediate, and

forms a natural commentary on the two dimensional work, or presents

special points of interest (Frenet's formulae). To make such extensions

systematically would make the tract too long. The subject matter

being wholly classical, no attempt has been made to give full references

to sources of information ; the reader however is referred at most stages

to the analogous treatment of the subject in the Cours or Traite

d'Analyse of de la Valine Poussin, Goursat, Jordan or Picard, works to

which the author is much indebted.

423597



VI PREFACE

In general the functions, which define the curves under considera-

tion, are (as usual) assumed to have as many continuous differential

coefficients as may be mentioned. In places, however, more particularly

at the beginning, this rule is deliberately departed from, and the

greatest generality is sought for in the enunciation of any theorem.

The determination of the necessary and sufficient conditions for the

truth of any theorem is then the primary consideration. In the proofs

of the elementary theorems, where this procedure is adopted, it is

believed that this treatment will be found little more laborious than any

rigorous treatment, and that it provides a connecting link between

Analysis and more complicated geometrical theorems, in which insistence

on the precise necessary conditions becomes tedious and out of place,

and suitable sufficient conditions can always be tacitly assumed. At

an earlier stage the more precise formulation of conditions may be

regarded as (1) an important grounding for the student of Geometry,

and (2) useful practice for the student of Analysis.

The introductory chapter is a collection of somewhat disconnected

theorems which are required for reference. The reader can omit it,

and to refer to it as it becomes necessary for the understanding of

later chapters.

I wish to express my great indebtedness to the Editor, Mr G. H.

Hardy, and also to Mr J. E. Littlewood and Dr T. J. I'A. Bromwich, for

assistance and advice in the preparation of this tract.

R. H. F.

October 1919.
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CHAPTER I

INTRODUCTION '

§ 1"10. We assume in this tract that the reader is acquainted with

the ordinary elementary theorems of the differential and integral

calculus, as developed, for example, in Hardy's Pure Mathematics

(2nd Edition, 1914); we apply these theorems to the geometry of plane

curves. We shall require more than is there given concerning implicit

functions, especially algebraic functions and the curves defined thereby.

Such theorems of this type as we require frequently are quoted with

references in § 1*50. The more important special properties of algebraic

functions are summarized in § 1-60.

We shall use freely the symbols r^,0,o, whose use is now classical,

and occasionally ^ and >. The reader who is not acquainted with

any of them will find the meaning of '^, 0, ^ and >= explained in

Hardy's tract 'Orders of Infinity' {Cambridge Mathematical Tracts^

No. 12). The definition of o is as follows

:

Iff{x) and g{x) are any functions of x, and g {x) is positive* for

all sufficiently large values ofx, we write

f{x) = o{g{x)\

when \f{x)
\ /g (x) ->

as x—> cc

.

A similar definition applies when x tends to zero, or any other finite

Hmit, instead of to infinity. The introduction of o into Analysis is due

to Landau, vide Landau, Handbuch der Lehre von der Verteilung der

Primzahlen, Vol. i, p. 59.

The symmetry of the differential notation and the use of direction

cosines are of vital importance in three-dimensional geometry. They
can be used with advantage in two dimensions and lend themselves at

once to the necessary generalizations. They are therefore used freely

here. It is, however, important that the reader should realise the

* Alternatively, it will be convenient for our purposes to allow g {x) to be negative

instead of positive in the above definition, and also in the definition of 0. The only

essential requisite in these definitions is that g {x) should not vanish for large values

of X.

F. 1



2 INTRODUCTION

precise iihtaie oi the statement made by a differential formula, and this

is frequently emphasised.

A limited selection of examples is given at the ends of the chapters.

Besides their more obvious function, these are intended to provide a

summary of some of the more important extensions of the theorems

proved in the text. References or sketches of a proof are therefore

given in such cases, which should enable the reader to complete the

proofs.

§ 1*20. Plane curves. We regard a plane curve as the locus of

points satisfying the equations

for a given range of values of t(t(^^t ^ ti, say) for which <^i (t), cf>2(t)

are continuous single-valued functions of t. A point P on the curve is

regarded as identified with a value of t. The variable t is real, and

^ and y are also always real. We consider throughout only real points

and curves.

More information than this about (f>i (t) and <f>2 (t) will always be

required, the amount varying from problem to problem. We may
specify conditions to be satisfied by <^i (t) and <^2 (0 either

(1) at a point P, i.e. when t=^t^^

or (2) in the neighbourhood of or "near" a point P, i.e. in the

neighbourhood of t^,

or (3) throughout the interval PQ^ i.e. when tQ'^t^t-^.

We say that the point P (t) lies between the points Q^ {ti) and

^2 (^2) on the curve, when ^1 < # < #2 ; also that the point Q {t) tends to

P(to), or Q—>P,P and Q being points on the curve, when t-^to.

A particular case of great importance occurs when x = t ov y = t, and

the curve is given in one of the forms

Curves may also be defined by implicit functions. We return to

these in § 1 "50.

We shall frequently be concerned with straight lines, circles and

other curves which depend on certain parameters, and shall study their

behaviour as the parameters tend to certain limiting values. In general,

suppose the curve is defined by the equations

(1-21) a; = <t>i{t,a,(3,...), y = (/,2(^, a,ft ...),

or by the equation



INTRODUCTION 8

Let a — a^,, /8 —> /3o, ... and suppose that

fix,y, a, ^, .,.)^g{x,y).

Then we shall say that the curve ^ = Xi (0> V-X'^ (0 ^^ ^^^ /^w^^^ c)/' the

cv/rve defined hy 1*21 and that the curve g{a^, y) = is the limit of the

curve defined by 1 22.

For example we shall define the tangent to any curve at a point P
as the limit of the chord PQ as Q—>P, the word limit being inter-

preted in the above sense. The chord may be

y = m($)aj + c (i),

where i is the parameter of Q. The limit of this chord is

y=pa: + d,

where m (i) —*p, c($)—^d as ^ —> 4- Thus, in the case of an algebraic

curve such as the above straight line, whose coefficients depend on a

parameter or parameters, we regard as the limit of the given curve that

curve whose coefficients are the limits of the coefficients of the given

curve.

We shall often go further than this and regard the curves defined

by 1'21 or 1'22 as approximate representations of their limiting curves.

It is then important to be able to describe shortly the closeness or order

of such an approximation. Suppose for example that a^a^ + Sa, and

that for any given values of ^ and y

as 8a —> ; in this relation 5' is a positive integer independent of £c and y,

while the constant implied by the may (and in general will) depend

essentially on the choice of ic and y. Then we shall say that the curve

f{x, y, a) = 0, when a is near a^, represents the limiting curve g {x, y) - 0,

with an error 0{p(if. When/(^, y, a) is a polynomial in x and y with

one non-zero coefficient independent of a, this statement is equivalent

to saying that all the coefficients of x and y in f(x, y, a) differ from

their limiting values by terms of order (8a)^.

§ 1"30. We frequently attempt to impose the minimum conditions

that enable us to make a definition or to prove a theorem. In considering

the properties of the curve y =f{x) at any point P {x^ on the curve, we

shall always impose the condition that/' (^0) exists*. This is of course

* See § 2-10, note.

1—2



4 INTRODUCTION

the necessary and sufficient condition for the existence of a tangent not

parallel to the axis of;/. We then proceed to consider the properties of

the curve in the neighbourhood of P, and for this purpose assume in

general that/' (a;„) is continuous at F. In this case the curve is always

rectifiable— it is always possible to assign a meaning to the length of an

arc of the curve in this neighbourhood. We therefore ignore the question

of the necessary and sufficient conditions that a curve should be recti-

fiable*; a discussion of this question would be out of place here.

Further assumptions are then introduced, such as the existence or

continuity of/"(^o)j etc., as required by the problem discussed.

We may mention in passing that the assumption of the existence of

f (x^) implies rather more than is at once apparent from the definition

of a difi'erential coefficient, and that the additional implications are of

some geometrical interest (see Note A).

§1'40. Choice of axes. Invariant relations. We shall assume

in general that the axes of coordinates to which our curves are referred

are rectangular. It will usually be sufficiently clear to the reader when

a theorem remains unaltered by permitting the use of oblique axes.

It is often convenient, in the proof of some general property of a

curve, to simplify the proof by referring the curve to a special set of

axes, such as the tangent and normal at a point on the curve. It is

therefore important to be able to assert that a property proved with a

special set of axes is true of curves in general, i.e. whatever the axes of

reference. It is permissible to make this assertion owing to the invariance

of the formal expressions of lengths and angles fm" the most general

changes of rectangular axes.

The restriction to rectangular axes is, of course, unnecessary, but a

consideration of this case is sufficient for the argument. The general

rectangular transformation is

x = x' cos 6-y %m6 + a,

y = x mid + y cos ^ + 6,

where a, h, 6 are any constants. It is easily verified that

(^1 - x^f + {y^ - y^f = {x^ - x^y + (y^ - y^)\

This is the property of invariance of length. For the invariance of the

(tangent of the) angle between two straight lines, it is easy to see that

if the lines are

y = 'mxX+Ciy y=^m<2X-\-C2,

* See § 2-50, note.
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and they transform into

y = mix + c/, y = m^x + Ca',

. ml -171.2 m^-m<2,
then ^ -,—7 = 7- •

1 + mi W2 1 + m^m^

Thus all the ordinary metrical properties of curves, which depend on

the relations between points on the curves themselves and their tangents

and normals, may be established for any system of axes and asserted to

hold true in general.

For example, the curvature of a curve is defined in the usual way as

where 8s is the length of an arc of the curve, 8i// the angle between the

tangents at the ends of the arc, and 85 and l^ are invariant for any

change of axes. Hence the above limit, if it exists when the curve is

referred to one system of axes, will exist and be equal for all others. It

is shown in the usual way that the value of this limit is

S/{-(l)T-
This expression is therefore an invariant for the general change of rect-

angular axes, as may be directly verified. When we wish to prove

properties of the centre of curvature of a point on a curve, we naturally

refer the curve to the tangent and normal at the point considered. The

value of the above invariant is then {d^y\do^\^ OT/"(0)f and the algebra

is greatly simplified.

§1-50. Implicit functions. In addition to the forms of § r20,

curves may also be defined by implicit functional relations between the

coordinates x and y of the type

/(.r,3/) = 0.

This case is reduced to the explicit form by the fundamental existence

theorem for implicit functions*. We quote here the form most useful

for our purposes.

Theorem 1*51. Existence theorem for implicit functions.

Suppose that F(x, y) is a function of the two real variables (x, y)

satisfying the conditions:

(1) it is real, one-valued, and continuous, and possesses a continuous

partial differential coefficient Fy in the neighbourhood of [x^^, y^:

* Hardy, Pure Mathematics, 2nd Ed., p. 192; Goursat, Cours d'Analyse Matlie-

matique, 2nd Ed., Vol. i, Chap. in. The former will in future be referred to as

Hardy, P M., and the latter as Goursat, for shortness.
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(2) i^(^o,2/o) = 0, F;,{x„y,)^().

Then, (a) there exists a unique function y = <ii{x) which, ivhen

substituted in tJw equation F{cc, y) = 0, satisfies it identically for all

values of X in the neighbourhood of x^:

(b) <f> (x) is real and continuous in this neighbourhood, and <l> (x) —> y^^

as x—^ Xq.

If further Fx exists and is continuous in the neighbourhood of

(^oj 3^o)j the function y = <l>
(x) possesses a continuous differential coeffi-

cient in this neighbourhood, and

(1-511) Fx+Fy'(dy/dx) = 0,

so that

dy/dx=<f>'(x) = -F,'IF;.

If further all the ?i"' partial differential coefficients of F {x, y)
exist and are continuous in the neighbourhood of (xo, y^, d^yldx^

exists and is continuous in this neighbourhood, and may be calculated by

the usual rules.

It may be noted that the exteDsions of the main existence theorem

as quoted assume more than is required about FrJ. In order that <f> (x)

may have a differential coefficient at Xq, satisfying equation l"oll,

the necessary and sufficient extra condition, over and above the con-

ditions of the main theorem, is simply that F^ exists at {x^, y^. This

can be proved by an easy revision of the argument given by Goursat.

More general existence theorems applying to n functions of m
independent variables are sometimes required, for example in the

theory of contact of curves and surfaces. In such cases the reader is

referred to Goursat*.

Cases of exception. If Fy {x^, y^) = the theorem breaks down, but

if i^a;' exists and is continuous, and FJ (xq, 2/o)=*=0, we can still apply

the theorem with the roles of x and y interchanged, and obtain a

unique real solution in the form x = <j> {y).. It is only if

Fy {x„y,) = F^{x„y,) = 0,

that the breakdown of the theorem is complete. In this case (^o, ^o) is

called a singular point. We shall assume that there are only a finite

number of such points in any region with which we deal. The question

of the existence of solutions in the neighbourhood of such a point is

* See also de la Valine Poussin, Cours d'Arialyse Infinitesimale, Vol. i, p. 169.

This book will be referred to in future as d.l. V.P. for shortness. References will be

given to the 3rd Ed. of Vol. i, and the 2nd Ed. of Vol. ii.
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discussed by Goursat, p. 102*. We shall return to these points and

their geometrical properties in Chapter vi.

A particular choice of axes, referred to which the equation of a

curve takes a particularly simple form, is frequently desirable. The

validity of the necessary change of axes to convert a general curve into

the required particular form may be established as follows.

Let us call for the moment an ordinary point on a curve

(i) y=m,
a point at which/' [x) exists and is continuous; on a curve

(ii) a^ = <}>i{t), y = <l>^(t),

a point at which <^i' (t),
<f>2

(t) exist and are continuous and not both

zero ; and on a curve

(iii) F{x,y) = 0,

a point at which F^y Fy exist and are continuous and not both zero.

We can then change the origin to the point near which we require

the form of the curve, and rotate the axes until in the new system of

coordinates (^, 77)

(i) (dv/di)o = 0, or (ii) (dvldt)o = 0, or (iii) (i'V)o = 0,

and also (ii) (^d$/dt\^0, or (iii) (Frj'\^0.

We thus arrive at the following theorem.

Theorem 1'52. By the cJwice of suitable axes a curve, in the neigh-

bourhood of an m'dinary point (as defined above), can always be expressed

in theform
2/=/W,(/(0)=/'(0) = 0).

After what precedes this is obvious in case (i) and follows at once

from 1'51 in case (iii). In case (ii) 1*51 may be applied to establish

the existence of a function i/' such that

where i/' (0) = tQ, xj/' (0) + 0, and if/' ($) is continuous near ^ = 0. Theorem
1*52 then follows as before.

The assumptions as to the nature of an ordinary point are more than

are necessary for the truth of Theorem 1 '52, but we shall only require

the theorem in cases in which these assumptions are required for other

reasons.

§ 1-60. Algebraic curves. If the function F{x, y) is a polynomial in

X and y, then y is said to be an algebraic function of x, or the equation

F{x, y) = is said to define an algebraic curve. This is the most important

* See also d.l.V.P., Vol. 11, Chap. ix.
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case of an implicit function. The relevant special properties of such curves

may be roughly summarized as follows.

(1) Every special assumption that we require to make as to the nature of

our curve is always true if the curve is algebraic, with the possible exception of

a finite number of points.

(2) In particular there are at most a finite number of points at which

near which the form of the curve is not determined by Theorem 1'51. In

the neighbourhood of any such point the form of the curve can always be

determined (see Chapters vi and vii) by a suitable extension of this theorem.

(3) The study of the form of the curve near infinity, i.e. as ^ —> « or

y —> 00 or both, can always be reduced by a suitable substitution to the study

of a similar curve in the neighbourhood of a finite point.

In making the foregoing statements we have tacitly assumed that F {x, y)

is not, for instance, of the form [O {x, y)Y^ where 6^ is a polynomial, for in

such a case every point of the curve is a singular point. Such cases of

exception are trivial from the present point of view and may be guarded

against by restricting ourselves to polynomials which are irreducible, that is to

say, without factors that are themselves polynomials.

CHAPTER II

THE ELEMENTARY PROPERTIES OF TANGENTS AND NORMALS

§ 2 10. Definition and existence of the tangent. Definition.

The tangent to a curve at the point P is the limit {if it exists) of the

straight line PQj when Q—>F along the curve.

Theorem 2*11. The necessary and sufficient condition that the curve

y=f{x) should have a tangent at P{xq, fix^)), not parallel to the axis

of y^ is thatf {x^ should exist. The equation of the tangent is then

y-/W =/'W (^ - ^o)*.

* If we admit infinite differential coefficients, and agree that /'(«(,) has the value

+ 00 (or - 00 ) if

Lt •'A_'_yAJ»/ = + 00 (or
x-x, ^

00

the phrase "not parallel to the axis of y " may be omitted and the words "if /'(.r^)

is finite, or a;- 0^0 = \if'{x^= ±oo " inserted at the end of the theorem.

The question is entirely one of phraseology, though perhaps more caution is

required if infinite limits are admitted. We shall nowhere admit them in this tract.
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(1) The condition is necessary. For if such a tangent exists, the

line jP§ has a limit of the form y = Ax + B. Now, if Q is the point

($,/(i)), the equation of FQ is

and therefore Lt
/(f) -/K)

exists, i.e./' (x^) exists.

(2) The condition is sufficient. For if /' {x^ exists, then

tends to a finite limit as ^—^o* and therefore PQ has a limit, not

parallel to the axis of y, which is the tangent at P.

Theorem 2 '12. In order that the curve

x==4>^{t), y = ^i{t)

may have a tangent at the point (to), it is sufficient that <f>i (to) and

<f>2 (to) should both exist and not both be zero.

The equation of the tangent is then

(2121) (y - 4>, (t,)) <^/ (to) = (x-cf>, (to)) <!>,' (to)''.

The equation of the chord PQ may be written

which has the required limit SiS t—>to, under the stated conditions.

Theorem 2"13. In order that the curve

/(x,y) =

may have a tangent at (x^, y^, it is sufficient that fj and fy should be

continuous in the neighbourhood of (xo, y^ and not both be zero at (xo, y^.

The equation of the tangent is then

(2-131) (x- Xo)fx (^0 , Vo) + (y- Vi^fy (^0 , Vo) = 0.

* A more useful form in practice is

(2-122) y - 02 (^o) ^ ^ - 01 (^)

or more shortly

(2 *i23) y ~yo _ ^ ~^o

Vo ^0

If one of Xq or yQ is zero, the equation must of course be interpreted to mean that

the corresponding numerator vanishes.
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This is a direct consequence of the Existence Theorem I'ol and

Theorem 2" 11. If for example // fe» 2/o)=+=0, the mere existence of

fx fej 3/0) is sufficient.

§ 2-20. The tangent as the limit of the chord. The tangent

may be the limit of a chord of more general type than that used in the

definition of § 2-10. This is shown by the following theorem.

Theorem 2 21. Iff {x) is continuous at x^^ the tangent at x^ to the

curve y=f{x) is the limit of the straight line Q1Q2 ivhen Qi, Q^—^P
along the curve.

It is not sufficient here that /' {x) should exist. Something more

is required and continuity is a simple and sufficient condition. If how-

ever Qi, Q2—>P from op^yosite sides, then the chord QiQi tends to the

tangent at P provided only that the tangent exists. See Note A.

The equation of the chord Q1Q.2 is

U2 Xi

The hypothesis of the continuity of /' (x) at x^ implies the existence

of /' (x) at all neighbouring points to P. Hence Qi and Q^ may be

taken near enough to P for /' (x) to exist at all points of the interval

Xi^x'^Xz. Therefore by the mean value theorem

/W-/fe)
^y.(_^^^.g(_^^_^_))^ (O<0<1).

X2 Xi

But since /' {x) is continuous at Xq, f (xi + 0(x2- Xi)) —>/' (x^), when

^1) Q^—^P, and the limit of the chord is

1/ -/W =/' (^0) (^ - ^0),

i.e. the tangent at P.

Other forms of the equation of the curve may be treated in a similar

manner.

We shall speak of a curve as having a continuous tangent at P,

when, as Q—>P, the tangent at Q tends to the tangent at P. It is

easily seen that the necessary and sufficient condition for this in the

case of y =f(j^) is that /' {x) should be continuous at P, and, for the

other two forms, that sufficient conditions are that <^i' (f) and <^/ {t)

should be continuous, or that fj and fy should be continuous, re-

spectively, at P.

§ 2 30. Definition and equations of the normal.' Definition.

The normal to a curve at the point P is a straight line through P at

right angles to the tangent.
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The equations of the normal in the three cases studied above are

respectively (the axes of coordinates being as always rectangular)

(2-31) /' (^o) {y-/W) +• (^ - ^o) - 0,

(2-32) {y - <t>, (to)) cj>,' (to) + (^ - <^a (to)) <f>x (to) = 0,

(2-33)
_ ^ ~ ^0 _ y ^0 •

fx (^0, yo)
~
fy (^0, yo)

§ 2*40. The geometrical meaning of differentials. Consider

the curve ^ y=f(x)

with a tangent at P, the point (^, -7), not parallel to the axis of y.

Fig. 1.

Let Q be a neighbouring point of abscissa ^ + ^x, M the point on the

ordinate at Q where it cuts the tangent at P, and PN a line through P
parallel to Ox, the axis of x. Then

QN^hj,PN=hx,

Also the equation of the tangent at P is

y-f(^)-f'(^)(x-^\

so that MN -/' (^) 8^ = df(x),

and therefore

(2-41) MN=dy.

* This must be interpreted as in § 2-10 when either fxi^o, Vo) or fy {xq, yo)

vanishes.
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Thus the differential ofy is the increase of the 09'dinate of a point on the

tangent cm-responding to an increase of abscissa S^. This equality holds

equally with oblique axes. Of course S^v may be an increase of either

sign, the increase of the ordinate being reckoned algebraically.

§ 2-50. Arcs and their differentials. Any arc of a plane curve

which has a continuous tangent is rectifiable*, and the length of the arc

measured from a point P to a point Q (the coordinates being rectangular

cartesians) is given by

(2-51) *=f{l + [/'(«)?}* rf^.

(2-52) s=\'uat)J + [^at)]fdt,

for curves of the corresponding forms. To avoid ambiguities of sign it

has been necessary to assign the direction in which s is to be regarded

as increasing along the curve, when measured from a fixed point P. It

it usually convenient, though not essential (see § 2*60), to take this

direction as the direction of x increasing or t increasing, as has been

done in 2"51 and 2 '52 above. Taking 2*52 and using differentials we

obtain t

(2-53) ds = {[<f>at)Y-^Wm}^dt,

(2-531) {dsy = {dxy + {dy)%

§ 2-60. Conventions of sign. We must now make certain con-

ventions to avoid the repeated occurrences of ambiguities of sign. We
have three positive directions to assign, namely, the positive axis of Xj

* See d.l.V.P., Vol. i, pp. 303, 368. For the study of rectifiable curves, more

particularly of the necessary and sufficient conditions for rectifiability, see d.l.V.P.,

Vol. I, p. 380 ; Jordan, Vol. i, p. 99. For the properties of continuous curves in

general, see d.l.V.P., Vol. i, p. 374 ; Jordan, Vol. i, p. 90. The book referred to under

the latter title is Jordan's Cours d'Analyse, 3rd Ed,

t By the usual rule for differentiating an integral with a continuous integrand

with respect to the upper limit. The assumption of a continuous tangent is made
throughout this section.

Ij: Note that 2-531 or its equivalent d«= {1 + {dyldx)^y dx is not the source of 2*52

but a deduction therefrom. Equation 2-51 or 2*52 is fundamental, for it is a direct

deduction from the definition of the length of an arc as the limit of an inscribed

polygon, and until 2*51 has been established no meaning can be attached to 2-531.

The reader will of course bear in mind that 2-531 is not the same thing as the

equation (5s)2= {dx)^+{5y)-, which is false except for a straight line : 2-531 expresses

in the differential notation the fact that, as 5x, 8y—>0,

(5s)2<^(5.T)2+(5y)2.
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i.e. the direction of ^ increasing, the positive axis of y, and the direction,

clockwise or counter-clockwise, in which an angle is to be reckoned

positive when measured from the positive axis of a\ Any two of these

three positive directions can be arbitrarily chosen without introducing

ambiguities into any of our formulae, but when this has been done, the

third positive direction cannot be so chosen if ambiguities are to be

avoided. We shall therefore make the following convention.

(A) The positive axis of y makes an angle + J tt with the positive

axis of X.

With this convention all our formulae remain correct whatever

choice is made of the directions in which two of the quantities x, y, and

the angle are reckoned positive. We shall, however, in general, suppose

that all angles are reckoned positive in a counter-clockwise direction

from the positive axis of x. This is convenient though unnecessary.

When a concise name is required, we shall denote the positive axes of x
and y by Ox and Oy, and similarly the negative axes by Ox and Oy.

We have now to assign positive directions along the tangent and

normal at any point of a curve, and the direction of s increasing along

the curve. We can assign arbitrarily the direction of s increasing along

the curve, but once this has been done, no further liberty of choice

remains if ambiguities are to be avoided. We make the following con-

ventions.

(B) The positive direction of the tangent is the direction of a line

drawn along the tangent iii the dii-ection of s increasing.

This direction will be spoken of as the direction of the tangent or

simply as "the tangent" when no misunderstanding can arise.

(C) The positive direction of the noi'mal makes an angle + Jtt with

''''the tangent '\

This may be spoken of as the direction of the normal or simply as

"the normal". If "the tangent" is the same as Ox, then "the normal"*

is the same as Oy.

§2*610. Further differential formulae. If i/^f is the angle

made by the tangent with Ox, we have, in all cases, with the above

conventions,

tan
\l/
= dyjdx-f {x).

It follows at once that

mi\l/ = ±dylds, cos if/ = ±dx/ds,

* We shall not in future emphasise this meaning by inverted commas,

t This use of \p is constant throughout the rest of Chapters ii and iii.
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and both signs must always be positive"^. Therefore

(2-611) «

(2*612) die = cos ij/ds, dy = sm\f/dsf.

If /, m I are the direction cosines of the tangent, then

l = cos^, m = sin if/j

(2 '6 1 4) da^ = Ids, dy = mds t,

(2*615) ds = ldx + mdy\.

All these forms express the same facts in different notations, all of

utility. The figures illustrate the last sections. The positive directions

dx , dy . ,

^ = cos^, ^ = sm^,

y^^

Fig. 2(a).

of tangent and normal are denoted by Pt and Pn respectively. The

two curves shown, aa and bb, have the same tangent and normal at P.

It must always be remembered that none of the formulae of this section

* The conventions were of course chosen so that this should be so.

t The reader will bear in mind that these differential relations are exact and are

not the same as the equations

dx= cos \p 5s, dy = sin i// 5s,

etc. These latter are in fact false unless the curve is a straight line. See equation

2-531, note.

J This use of 1, m is constant throughout the rest of Chapters ii and in.
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r -

b

Fig. 2(6).

are affected by the choice of the direction of s increasing. We shall

return to these formulae when treating of curvature.

§ 2 '620. Limiting ratios of arcs, chords, and tangents. The

following theorems deal with the limiting ratios of arcs, chords and

tangents.

Theorem 2*621. The ratio of the arc and the cwresponding chord

tends to 1 as the arc tends to 0.

For (hsy = {dsy{l+o{l)\

{hxy + {hjy = {dxy (1 + (1)) + (dyy (i + o (i)),

= {(dxy-^{dyr]{l-vo(l)\

and therefore {^sf ^ {hxy + (83/)-,

which latter is the square of the chord.

It is easy to show more exactly that, if f(x) has a continuous

third differential coefficient (with similar conditions for the other forms

of curve),

(2-622) Arc - Chord = (8s)^

As a corollary of this it is easy to prove that if /x is the greatest

distance between the arc and the chord then

(2-623) ix. = 0{hs)\

One further step shows that these lengths are effectively of these

orders, except for isolated points, unless the curve is a straight line*.

These results are frequently useful.

The following result, also useful, is of the same nature as the fore-

going. We omit the proof f.

* See Ex. i, 1-3. t See Ex. i, 5.
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Theorem 2-624. If PT, QT, are tangents to the curve y=f{iv) at

P and Q, intersecting at 1\ then

(2-625) PT+QT=hs + 0{^s)\

as Q-^ P; and, if also/" (x) ^0 at P,

(2-626) PT- QT= (Ssf*.

We assume a continuous third differential coefficient. Equations

2*625 and 2 '626 hold of course for any form of curve, with a suitable

condition to replace /" (ai) + 0. This condition may be stated in the

general form that P must not he a ijoint at which the tangent is

stationary t.

§ 2*70. Tangents in polar coordinates. We shall content our-

selves with considering a curve of the form r =f(6), or one that can be

put into that form in the neighbourhood of (r^, 0^), the point under con-

sideration.

Theorem 2'71. Ths necessary and sufficient condition that the curve

r =/(0) may have a tangent at (tqi ^o), which is not the radius vector to

that point I, is thatf (Bo) exists.

The eqvMtion of the tangent is then

(2-711) ^) = cos(^-^o)--^^sin(^-^o).

O
Fig. 3.

If the line QP has a limit as ^ —> P which is not the line OP, <t>

(see Figure 3) has a limit which is not or tt and so sin </> has a non-

zero limit. But
(ro + Br) sin (<^ - B$) - r^ sin </» = 0,

* For the case /" {x) = Q see Ex. ii, 4.

t See § 3-10 and Ex. ii, 4. J See Theorem 2-11, footnote.
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and therefore as Q —> F, i.e. as 8r and SO tend to zero,

Br _. . . f^l^\ /cos <^ \ / 1 \ ro(l-cQs8^)

SO ~ ^''' "^ ''''

\ BO J Uin ^/ Vcos S^J
"^

8^ cos BO '

The right-hand side tends to a limit, since each term has a limit, and

therefore BrjBO has a limit; i.e. f'(0^) exists. Conversely, the above

reasoning may be reversed, and the theorem is proved.

To find the equation of the tangent when /' {0) exists, we proceed

as follows. Let (/?, a) be the polar coordinates of the foot of the per-

pendicular from on PQ. Then p and a both tend to finite limits

when Q—>F. The equation of QPY is

(2-712) rcos(iO-a)=p;

and, since P and Q lie on this line,

r, cos (^0 - a) =P,

(ro + Br) cos ((9, + BO-a) =p.

Therefore, in the limit, p and a referring to the tangent,

(2-713) /(^o)cos(^o-a)=i>,

(2-714) /' (^o) cos (^0 - a) -/(^o) sin {0, - a) = 0.

To obtain the tangent we find, from 2-712 and 2*713,

f{0,) ^ COs(^-a) ^ COs(^,-a + ^-^J
r COS (^0 - a) COS {0^ - a)

= COS {0 - 0,) - tan (^o - a) sin {0 - 6,),

and so, by 2*714,

(2-72) li^ = cos (0 - e,)

--J^
sin (0 - 0,).

§2-730. Conventions of sign and differential formulae in

polar coordinates. We make the following conventions.

The initial line of is Ox and is measured positive counter-clock-

wise. When the tangent is continuous, so that the curve is rectifiable,

s is so chosen as to increase with 0. The angle <^ between the tangent

and radius vector is reckoned positive counter-clockwise from the positive

radius vector* to the positive direction of the tangent. We then have

in all cases

(2-731) il^
= +

<f>, (Mod. 27r).

* The positive radius vector is to mean the direction of an arm drawn from O
making an angle + 6 with the initial line Ox. It must be remembered that negative

values of r have to be allowed for.

F. 2
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The figures 4 (a) and 4 (h) illustrate this equation.

Fig. 4(a). Fig. 4(6).

Referring to Figures 4 and the proof of the last theorem we see that

cot* = tan(^.-a)=^) =
^^^.

This formula is perfectly general, so that we have in all cases the

important formula

(2-732) *^^^='^-

To obtain a formula for the differential of the arc, suitable for polar

coordinates, we have in all cases

a? = r cos ^, y = r sin 0,

and therefore

diP = dr cos 0- r dO sin 6,

dy = dr sin + r dO cos
;

(dsy = {dxy + {dyy = {drj + r^ {de)\

(2-733) ds = ± {{dry + r^ {dOJ}^ - + {y^ + {drjdej}^ dO,

s= {-©)'
We have also in all cases

,^ « .

X

rdO . .^ dr
,

(2-734) -^=sm<f>^ ^ = cos<^.

* Note that can only be greater than tt if r is negative.



THE ELEMENTARY PROPERTIES OF TANGENTS AND NORMALS 19

§ 2 '80. Concavity and convexity. Consider a curve given by

the equation y =f{cc) in rectangular m- oblique coordinates, and a point

P on the curve where /' {x) exists, i.e. where the curve has a tangent

not parallel to the axis of y. There are two sides to this tangent,

which are distinguished by the facts that on one side ^ -^ + oo along

any line parallel to the y-axis, while on the other y—^-cc. We shall call

the side on which y —> + cc the upper side, and the side on which

y—>-cc the lower side, of this line (the tangent). If the curve lies

entirely on one side of the tangent in the neighbourhood of P, it is said to

be concave upwards (yr convex upwards at P* accm-ding as it lies

on the upper or the lower side of the tangent in the 'neighbourhood of P.

Theorem 2*81. The curve y =f{x\ for which f{x) possesses a con-

tinuous second differential coefficient at P, is concave (convex) upwards at

Pif
/"(^)>0(<0).

The curve will be concave or convex upwards (see §2*40) according

as hy - dy is positive or negative for all sufficiently small values of hx

of either sign. But, by Taylor's theorem,

(2-811) hy-dy = k{hxff"{x + ehx\ (0 < ^ < 1).

As /" {x) is continuous, the theorem follows at once.

A curve y=f(x) is said to be concave (convex) upwards throughout

the interval ^o "^ ^ ^ ^i , if every point (excluding the end points) of any

arc of the curve in this interval lies below (above) the corresponding chord.

This is equivalent to the statement that the curve is concave

(convex) upwards throughout the interval, if

(2-82) fdO +/(« - 2/(« > (< 0)

for all values of $i, $2, is, such that

It is easily verified that, if /" (x) is continuous throughout the

interval, 2*82 is equivalent to the condition

(2-821) /"(^)>0(<0), (^o^^^^i)-

It follows at once by comparison of 2*811 and 2*821 that if such a
curve is concave (convex) upwards throughout an interval it is concave

(convex) upwards at every point of the interval and conversely.

* Alternatively, convex downwards and concave downwards respectively. It

should be remembered that "upwards" is used simply to denote the direction in

which y—^ + ao. This is because the positive axis of y is usually so drawn, but the

word '

' upwards " must be applied in accordance with the above definition whatever

the direction actually chosen for the positive axis of y.

2—2
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Curves that are concave (convex) upwards throughout an interval

are of considerable importance in analysis ; their properties can how-

ever be discussed without any hypothesis as to the existence of /" (a;).

Their further treatment is out of place here"^.

§ 2'90. Points of inflexion. Definition. ^ point of inflexion

is a point at ivhich the curve C7vsses its tangent.

For the curve y =/(^), with a continuous/" (x), we have

^y-dy = lf"{x + 6hx){hx)\ (0<^<1).

In order that cc may be a point of inflexion for such a curve, it is necessary

and sufficient that hy - dy should change sign with hsc, i.e. that

should change sign with /x. Hence a point ofinflexion is a root off" (x) =

at whichf" {x) changes sign, and conversely. A sufficient condition that

/" {x) should change sign is that, if y <"> {x) is the first differential coeffi-

cieut not vanishing with/" {x), n should be odd. For we have

8y-dy = ^^f^'^)(x + eSx), (0 < 6 < 1).

Developments of this nature belong more properly to the theory of

contact.

It must be remembered, however, that a curve may have a point of

inflexion at a point at which the tangent is parallel to the ?/-axis,

and at such a point /" (x) does not exist. To avoid this case of ex-

ception, we may say that, for a curve for which one at least of d^y/dx"^

and cPxIdy"^ exists and is continuous, the points of inffection are the

points at which one at least of d'^yjdx^ and d^xjdif vanishes and changes

sign.

Consider now the curve

for which <^{'
(f), <l>2" (0 are continuous. The equation of the tangent at

to is (^ _ <^, (to)) cf>,' (t,) -{y-<l>, (to)) <!>/ (to) = 0.

The perpendicular distance of (x, y), a point on the curve, from the

tangent is algebraically proportional to

(<^l (0 - <t>i (to)) <l>2 (to) - (<l>2 (t) - </>2 (^o)) <f>l (to)

<l>l'(to + fl) <l>2'(to + fl)

<t>i (to) <^.;(o

= i(t-to)

* See d.l.V.P., Vol. i, pp. 285-291.
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(2-901)

where fji = 0(t-to) and 0<0<1. The curve therefore crosses the

tangent if

vanishes and changes sign at ^ = ^o-

§ 2-910. Concavity, convexity and points of inflexion in

polar coordinates. The property of being concave or convex to a point

may be defined in a similar manner to the property of the being con-

cave or convex upwards. If the curve lies entirely on one side of the

tangent at P, and Q is a point not lying on the tangent at F, we say

that the curve is concave (convex) at P to the point Q according as the

curve near P lies on the same {opposite) side of the tangent at P as the

point Q.

Take the point Q for the origin of polar coordinates, and suppose

that the curve is r =f(0), and that/"(^) is continuous. The equation

of the tangent is

•^ = cos(e-e,)--Jg^)sm(fl-e.).

The curve will be concave (convex) to the origin if

•^^ - cos (e - 0.)+-^) sin (0 - e.) > (< 0),

when
I

^ - ^0 1 is small. This condition reduces to

i/m' + 2 (/' ie„)y -/(«„)/" (6,) > (< 0).

In the same way the condition for a point of inflexion for such a curve

is that (/(g)). + 2 (/' (e)y -f{6)f" (0)

should vanish and change sign at = 0o.

Much of what proceeds takes a simpler form if the curve is ex-

pressed as u =f(0)f

where u = 1/r. The last expression in the condition for an inflexion is

then replaced by y (^) +y" (^o).

EXAMPLES I

(1) Prove that the fx of § 2-620 satisfies the relation

for the curve ?/=/(^'), and deduce that fi= o{8a:f implies that the curve is a

straight line.

[At the point of greatest distance between arc and chord, the tangent
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must be parallel to the chord. Hence take the tangent and normal as axes
and consider the intersections of y=f{x) {f{0)=f' (0) = 0) and y = /x.]

(2) Taking x=f{t\ y=g (t) for the curve and writing

prove that arc -chord-^3 (^"/'-/".9')'

= {dsf/24p\ (see 3-132)

Deduce that arc - chord= o {dsf

implies that the curve is a straight line.

[We have d (arc)= j"^K/' (0)^(^(0)2) dt,

d (chovd)= {{f(t+dt) -f{t)f+ {g (^+SO-^(OM
Expand by Taylor's theorem in powers of bt as far as {btf^ and the result

follows. If (arc- chord)= o(50^ then f"lf'=g"\g'. Integrating, f'= Ag\
f=Ag-\rB, which defines a straight line.]

(3) Deduce ;a=0(8s)2 directly from

arc - chord = {hs)\

[Establish and use the fact that

/i2<i{(arc)2-(chord)2}.]

(4) Using polar coordinates, prove that, iif'{B) is continuous at ^= ^o, the

tangent is the limit of the chord QiQ^ as $i, ^2—>^ (»'o> ^o)-

[Combine the proofs of 2-71 and 2*21.]

(5) With the notation of Theorem 2*624 prove that, in order that

PTjQT—^ 1, it is sufficient that/" {x) should be continuous and not zero at P.

[Take the tangent and normal as axes, and the curve as

y=/(^), (/(o)=/'(o)=o).

The tangent at x is given by 2'11. Find the coordinates of T. Theorem 2*624

itself may be established similarly. Note that the condition f"{x)^0 is

invariant, § I '40.]

(6) Three neighbouring tangents are drawn to a curve. If Ssi, bs^ be the

lengths of the arcs between the points of contact taken in order along the

curve, 8\/r the angle between the extreme tangents, and A the area of the en-

closed triangle, then

£^^\bsibs2by\r.

It is assumed that the points of contact tend to a point at which /" {x) is

continuous and not zero.

[The lengths of the two sides including the angle b^ are asymptotically

equivalent to \bsi and ^bs^ respectively. This follows at once from Exs. 3

and 5.]
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(7) Prove geometrically that, if PT the tangent at P exists, then the

chord Q1Q2 tends to the tangent at P as Q^, Q^—^P from opposite sides.

Show where the proof fails when $1, Q.^—^P'm any manner.

Show that if PQi , PQ2 are equal and opposite arcs, and /'" {x) exists at P,

the chord §,^2 represents the tangent at P with an error {bsf', and that some

condition of equality is essential.

[The angle between PT^and Q1Q2, is less than the angle between PT and

PQi. Hence Q1Q2 tends to parallelism with PT^ etc.]

(8) Define a tangent of the twisted curve

•^=<^i(0» y=<^2(0, 2=03(0,

and obtain its equations in the forms

x-XQ ^ y-yf^ ^z~ZQ

<pl 02' 03'

dx dy dz '

If ^1 , mj , Ml are the direction cosines of the tangent, prove that

dx=lidsj dy= mid8, dz=nids.

[d.LV.R, Vol. I, pp. 325-331.]

(9) The osculating plane of a twisted curve being defined as the limit of the

plane PQ1Q2 when Qi and Q2 tend to P along the curve, obtain its equation

in the forms

= 0, l^-^o 2^-yo ^"^0

dx dy dz

I

d\v d^y d^z

Prove that the osculating plane is the limit of

(a) a plane through the tangent at P and the chord PQ,

O) a plane through the tangent at P and parallel to the tangent at Q.

Alternatively, show that the angle between the normal to the osculating plane

at P and the tangent at ^ is ^tt + (Ss), if 0i" etc. exist at P, and is ^tt + {bsf

if 4>\" etc. exist at P.

[d.LV.P., Vol. I, pp. 335-337.]

(10) If P^i, PQ2 are equal and opposite arcs bs, prove that under suitable

conditions the plane PQ^ Q^ represents the osculating plane at P with an

error {bsf, iSut that if the arcs are not equal the error will usually be {bs).

(11) The line of intersection of the osculating plane at P with the oscu-

lating plane at Q tends to the tangent at P as ^—> P.

[d.l.V.P., Vol. I, p. 346: or geometrically, using Ex. 10.]

7-^0 y-vo z-z^

0/ 02' 03'

0r 02- 03"
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CHAPTER III

THE CURVATUEE OF PLANE CURVES

§ 8-10. Curvature. The idea of curvature is introduced to afford

a measure of the rate at which the tangent is turning as the point of

contact moves along the curve. Suppose that PQ are two points on any

rectifiable curve which has a tangent at every point of the arc PQ, Ss

the length of the arc PQ, and 81/^ the angle between the tangents at P
and Q. Then Sifz/Ss is called the mean curvature of the arc PQ, and

if it exists, is called the curvature at P. If this limit is denoted by I//0,

p is called the radius of curvature at P*.

We shall find in practice that it is necessary to attach a sign to the

mean curvature, curvature, and radius of curvature. Consider the case

of two equal circles touching externally at P. The mean curvatures of

Fig. 5.

the equal arcs PQx, PQ2 are, as at present defined, equal, though the

tangents turn in opposite directions as the points of contact go from P
to Qi and Q2. To take account of this we introduce the following

definitions.

* If the curvature at P is zero, there is no radius of curvature or ' * an infinite

radius of curvature" according to choice.
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Definitions. With the conventions o/g 2*60, the mean curvature

of the arc PQ is defined as

the arc s being measuredfrom any convenient point on the curve, and the

curvature at P is defined as

Lt (^Q-^p)l(SQ-Sp),

if this limit exists.

The radius of curvature at P is the 7'eciprocal of the curvature^

and is usually denoted by p.

The centre of curvature at P is a point C on the nm^mal at P
such that PC^p*.

The circle of curvature at P is a circle with centre C and radius

» We find in all cases that the coordinates (JT, Y) of C satisfy

(311) X=cc-pm\\^, Y=y + pGOSif/;

or, if (/', m') are the direction cosines of the positive normal,

(3-12) X=x + rp, Y = y + m'p.

Theorem 3*13. The necessary and sufficient condition that the curve

y =f{x) should have a definite curvature at anypoint x, where the tangent

is notparallel to Oy, is thatf"{x) sJiould exist. The curvature Ijp is then

given by

(3-131)
• i=-^Q^.

P {l + (/(a;))r

(1) The condition is necessary. For in order that i/'p and «/^q may

exist, it is necessary that the curve should have a tangent in the neigh-

bourhood of P; and in order that ht{\l/Q-^p)l{sQ-sp) may exist it is

necessary that \1/q —

»

xj/p, i.e. that »/^ should be continuous at P. As

(3-1311) taniA=/(^), ('A + i'^),

f'{x) must be continuous at P.

If Q is the point {x + hx, y + hy),

fJx ''^{i+(f(m^di.

Since /'(^) is continuous at | = ^,

{1 + (/(«y}* ={!+(/(^))f+Ki),
8s = Sx{l + (f(ix)y}^ + o(8x).

* Of course with due regard to the sign of p and the positive direction of the

normal Pn.- If p is positive C lies on the positive normal Pn ; if p is negative C lies

on Pn'.
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Therefore Lt ^^ ^ {i + (f(,^)y]-h^Q^

Also
_

8^/8s = (8i///8^) X (8a^/8s),

and therefore, as Sif/JSs has a limit, and So?/8s a non-zero limit, as 8a^—> 0,

Si/r/8^ must have a limit. But applying the mean value theorem to

31311 we have

B^ sec^ (lA + 0' SxJ;) =f\x + 8x) -f{x\ (0<6'< 1),

But cos\^ + 0' Si}/) has the non-zero limit (1 +{/(^)}')"\ so that

{f(x + 8x)-f(x)}/8x

must have a limit, i.e.f'{x) must exist.

(2) Conversely, the above reasoning may be reversed, and if/"(^)

exists, then

,,2,^zx 1 + i/WP'

Lt ^| = (i + {/WP)-^;

so that Lt ^ = Lt j^ X Lt J-

;

1 /"(^) ,and finally , .

p (i+{/(^)n*

At points at which d^/ds = 0, the curve is said to have a stationary

tangent. It is easy to see that, if Xq is such a point, /"(^o) = provided

/"(^o) exists. At all points of inflexion, therefore, at which /"(^z?) exists,

the curve has a stationary tangent, but the converse is not true, for at

a point of stationary tangent the curve may not cross its tangent. The

further consideration of such points belongs more properly to the theory

of singular points.

Other formulae for the curvature 1/p are

(3132)

len the

(3-133)

when the curve is x=<t>i(t), y = <f>2(t) ; and

P (FJ'+Fy'')^

* If Q—>P from the right (left) then f"(x) need not exist, but it is necessary

and sufficient that /'(a:) should have a differential coefficient on the right (left).
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when the curve is F{a:, y) = 0. These are direct deductions from (3*131)

and the theorems of the differential calculus. The proofs may be left to

the reader.

§ 3*20. Properties of the centre of curvature. The centre of

curvature C has a large number of properties many of which give

rise to alternative definitions. These ai'e contained in the following

theorems.

Theorem 3 '21. A curve is always concave to its centre ofcurvature.

The proof of this theorem is left to the reader.

Theorem 3 '22. If the normal at Q cuts the rm^mal at P in r, and

C the centre of curvature at P exists, then r—>C as Q—>P.
Take as axes of coordinates the tangent and normal to the curve at

P. By § 1*40 this does not affect the generality of the argument. Then,

by Theorem 1*52, the equation of a sufficiently small arc of the curve

containing P can be put in the form

2'=/W, (kl<8),

where /'(O) = and/"(0) exists and is not zero*. The coordinates of

are (0, p) or (0, l//"(0)). The equation of the normal at Q(i,f($)) is

which cuts ^ = where

This is the ordinate of r. AsQ^P,i-*0, /(i) -* 0, and

i/fd) = (i-o)/(f'(i)-fm -> i//"(o)

by definition, since /"(O) exists and is not zero. Hence r —» (7.

Theorem 3*23. (A) If the normal at Qi cuts the nm^mal at Q^ in r,

and C the centre of curvature at P exists, then T —>C as Q^—^P and

Qa —> P, if Qi cind §2 cire always on opposite sides of P.

(B) But if Qi—^ P and Q^—^P in any manner, V med not tend to

C unless p is continuous at P.

(A) Let Q, V cut PC in Tj, QJ^ cut PC in V^-, then, if Q^ and Q. are

always on opposite sides of P, V cannot lie on Q^V^ and Qj^i or on both

QiTi and Q^^V^ produced; it can only lie on one of them and on the other

produced, as in the figure. It is true that r, Fj, V^ can all coincide, but

this will not affect the succeeding argument. As QiTQa-^O, VJ^V^ is

* The existence of G implies that C is a finite point according to our usage.
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ultimately greater than Jtt, and therefore T lies inside a circle on FiTa

as diameter. But T^-^C, T^—>C as Qi—>P, Q^—^P; it therefore

follows that r —> C as Qi and Q^ tend to F from opposite sides.

P Q2

Fig. 6(a).

(B) The preceding argument breaks down here. But ifp is continuous

at P, there must exist a centre of curvature Ci at Qi if ft is sufficiently-

near P. By the preceding reasoning, if ft is the middle point of the

three ft, ft, P, then V, A, Tg -^ (7i as ft—^ ft, P—> ft, ft remaining

fixed. In other words, given c we can find a number 8^ such that TCj < c

provided only ft ft < Sj , Pft < Sj . But since p is continuous at FjCi—^G
as ft —> P, or in other words there exists a number S^ such that CiC<€
if only ftp < 83. Hence there exists a number 8 (the lesser of 8^ and 82)

such that CT < 2c if only Q^P < 8, ftP < 8. In other words T -> C as

required.
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On the other hand it is possible to construct cases in which, if p is

not continuous at P, T does not tend to (7 as Qi, Qo—>P in a suitable

manner.

This theorem is an example of the general principle explained in

Note A to § 1-30 of the Introduction.

Theorem 3 "24. If a circle whose centime is cut* a regular arc of

any cm^ve in two points Qi, Q2, then there exists a point P on the curve

between^ Qi and Q2 such that OF is cc normal to the curve.

Fig. 7.

By a "regular" arc we mean an arc along which the curve can be

put in the general form

oo = <i>x{t), y = <t>2{t),

where <i>i{t), 4^2 {t) exist, and are not both zero, at Qi, Qo, and all points

of the arc between.

We have, if is the point (a, h), and P any point on the arc,

OP'^(a-Ut)y-^(b-<t>,{t)f;

therefore OP^ is a continuous function of t while P lies on the arc Q1Q2J

possessing everywhere a differential coefficient

-2{(a-i>0 4>x+(b-<t>2)<f>2\,

and taking the same value (jR^ say) both at Qi and Q2. Therefore by

* Nothing prevents the curve and circle from touching at one or both of Qi

and ^2-

t I.e. a value of t such that ti<t<t2 if ti and ^2 ^re the parameters of the points
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Rolle's Theorem, there exists a point P between Qi and Q^* such that

j^(OF') = 0,i.e. such that

This is satisfied at any point at which <l>i and
(f>.2

both vanish. But if

as we have presupposed they do not, it is the condition that OP is

normal to the curve at the point P as required.

We can now prove at once two more theorems embodying possible

definitions of C.

Theorem 3*25. If a circle centre he drawn touching the curve at

P and cutting it at Q, and if C the centre of curvature at P exists, then

O^CasQ-^P.

Since (7 exists, the conditions of Theorem 3*24 are satisfied when Q
is sufficiently close to P. Therefore there exists a point JT between Q
and P such that OX is normal to the curve. As Q-^P, Jl—>Pj and

as Jr—>P, 0-^C, by Theorem 3'22, as was to be proved.

In a similar manner we prove

Theorem 3*26. If a circle centre he drawn cutting the curve at

three jmnts Qi, Qa, Qs, cLft'd if p is continuous at P, theii O-^C as

Qu Q2. Qs-^Pi^

* I.e. a value of t such that fj < t < fg if *i and to are the parameters of the points

Qi, Q.2-

t Note the following enunciation which does not involve the hypothesis of con-

tinuity :

—

If a circle centre O be drawn cutting the curve at three points Q^ , P, Q2 and (7, the

centre of curvature at P, exists, then 0—^C as Qi, Q2—^P from opposite sides.
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Theorem 3*27. The osculating circle, when it exists, is the same as

the circle of curvature.

This is a particular case of theorems on contact. See § 4'40.

Each of the foregoing theorems embodies a possible definition of G
the centre of curvature at a point P, but it is clear that some are more

general than others. Thus any of the definitions embodied in Theorems

3*22, 3 '23 (A), 3 '25, are as general as our definition, and accordingly may
replace it. The others are not so general and so are not suitable. Con-

versely, it may be shown that if any of these alternative definitions be

adopted, then, at any point at which the curve has a curvature 1/p by

the new definition.

It follows that these definitions are completely equivalent. As a speci-

men of the theorems to be proved we take the following

:

If the nm^mal at Q cuts the normal at P in T, and if V tends to a

finite limit C as Q—^P, then

is%o^sr PC
with the pi'oper conventions of sign.

This is the converse of Theorem 3*22, and the proof is simply the

proof of that theorem turned backwards, with obvious changes.

There are a variety of other circles which tend to the circle of curva-

ture at P as a limit. The following are instances.

A circle touching the curve at P, and the tangent at a neighbouring

point Q*.

A circle touching the tangent at P* and the tangents at neighbour-

ing points Qi, Qat.

A circle passing through P and touching two tangents at neighbour-

ing points Qi, Q^t.

A circle touching the tangent at P, and passing through two neigh-

bouring points Qi, Qal-

In each case P may be replaced by a point Q^ which tends to P.

Direct proofs of all these theorems are not difficult (with the obvious

* I.e., the circle touches Qt, the tangent to the curve at Q, but touches Qt not

necessarily at Q.

t Tl^ere are four circles touching these three tangents, of which three have as

limit the point P.

X There are two such circles in each case, both of which have the circle of curva-

ture at P as limit.
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assumptions). They depend on a combination of Theorems 3*25 and

3*26 with well-known properties of triangles.

§ 3 30. The closeness of approximations to the circle of

curvature. It is often useful to know the order of the error involved

in replacing the circle of curvature by one of the circles which has the

circle of curvature for a limit, for instance the circle through P and

two neighbouring points §,, Qa-

Fig. 9.

Taking the tangent and normal at P for axes, the curve is

y=f{^), (/(0)=/'(0) = 0, /"(0)+0);

C is the point (0, 1 //" (0)), and r the intersection of the perpendicular

bisectors of PQi, FQ^. Then r lies on the two lines

where Q^ is (^1, -q^ and Q^ is (4, v^- If/*'' (0) exists, we have

and therefore the equations (331) reduce to

^ + {^^./'(o) + J«:y"'(o) + m)y-hi^ (1 + (fi')) = 0.

^ + {UxTXO) + kiif'io) + (f/)} y - ^4 (1 + 0{S,')) = 0.
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Solving, we have

where | denotes the numerically greater of ^i and ^2.

It follows that in general the ordinates of C and V differ by a

length of order ^, but that if ^2 = - ^1 then

(3-32) a> = 0{i%y=j^^ + 0{i%

We have therefore proved that if the arcs PQi, PQ2 are equal and
opposite {say ± 8s), or mm-e generally if PQi = 8s, PQ2 = — Ss+ (Bsy,

then

(3-33) TC=0(Ssy.

Since both circles pass through P, their radii also differ by (Ss^, and

in fact the circle Q2PQ1 represents the cii'cle of curvature at P with an

error 0(hsy.

This fact is important if we wish to apply geometrical reasoning to

approximate figures. If, for instance, we are going to argue about C
and Ci (the centre of curvature at ft), representing them in the fore-

going manner by r and Tj , TV^ or CCx will itself be a small quantity

of the first order and, unless VC and Fid are of higher order than the

first, no such argument can possibly be legitimate. It is essential to

take the precaution indicated by the preceding discussion*. When this

has been done we have for instance

rri/cCi = 1 + 0(85),

whereas in the other case it is by no means evident even that

Lt rrjcCi = 1.

In a similar way it may be shown that, if K is the intersection of

normals at ft and ft,

(3-34) KC=0(Ssf

if and only if Pft and Pft are, with a possible error (85)^ equal and

opposite arcs.

* Similar arguments must be applied in the theory of twisted curves when

approxiAate geometrical figures are used. The use of such figures can only be

legitimate when the errors in the approximate representations are of the second or

higher order. This point appears to be often overlooked.

F. 3
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§ 3-40. Newton's Method. A formula that is often useful is con-

tained in the following theorem.

Theorem 3*41. If the tangent and normal at P are taken as axes

ofX and y, and p exists, then

(3-42) P= ^^t'

Let Q be the point (x, y). Draw a circle to touch the curve at P
and pass through $; then, by Theorem 3'25, this circle tends to the

circle of curvature as Q—>P, i.e. as ^ —> 0. If ^ is the radius of this

circle, RN= 2R—y. We have also

NP' = NQ.NR,

x'ly^^R-y-^^p,so that

which proves the theorem.

§ 3 '50. The Differentials dl, dm, etc. Theorem 3*22 has an im-

portant conseq;uence. The equation of the normal at (^, rj) may be

written

(3-501) (x-e)l + {y-ri)m = 0,

where (/, m) are as usual the direction cosines of the tangent at (^, 17).

C*{X, Y) lies on this line, so that

(3'502) (X- e)l + {Y-'n)m = 0.
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But C is the limit of intersections of neighbouring normals, and there-

fore* (JT, Y) also satisfy the equation

(3-503) (X- $)dl + (Y-r})dm^ Id^ + mdrj = ds.

But we have also P + m^=l, and therefore

Idl + mdm = 0.

Hence dl and dm satisfy

\(Y-'n)dl-(X-i)dm = 0,
(3-504)

^^^_ $)dl+{ Y- yj) dm^ds\

which may also be written

(3-505) £f~'f ^^'/
^ ^ [ldl + mdm = ds/p,

where (/', m') are the direction cosines of the positive normal.

We have therefore

. X dl _ r dm _ m'
^"^'^^^

ds~~p' Ts~~^'

<»-) l.=
(l/*(s)"-

Remembering that I = dxjds^ m = dyjds, we have

(»-> ^©)*©•
With our conventions t, /' and m! are connected with / and m by the

relations
j; ^^^ m' = -l

* The full reasoning here is as follows. {X, Y) is the limit of the intersection of

and {x-^-8^) (Z + 5Z) + (y - t? - S77) (w + 5m) = 0,

i.e. of {x-^)l+{y -7i)vi= Q

and [x-^) 81+ {y- 7}) 5m={{l + 8l) 8^ + {m + dm) dr]}

.

Now when /" {x) exists dyp exists, and therefore dl and dm exist. Therefore {X, Y)

satisfy {x-^)dl + {y-v)dm= ds,

which is the limiting form of the second equation,

t In general {V, m') satisfy

r2 + m'2=:l, ll' + mm'= Q

{condition of perpendicularity) , and therefore

V= \m, m'= -\l,
»

where X= ±1. X=l when the conventions are chosen so that, the positive tangent

coinciding with Ox, the positive normal coincides with Oy; X= -1 when, in like

case, the positive normal coincides with Oy'.

3—2
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Therefore

, N dl' _ I dm _ m
ds p' ds p

'

It may be noted that we have nowhere assumed the continuity of/"(^)

or its equivalent. Formulae 3 '51, 3 "54 are the two-dimensional ana-

logues of Frenet's Formulae.

A more general formula for p, available for any parametric repre-

sentation of the curve, may be obtained as follows from 3 '52:

which reduces to

(3-55)

{dsiPx - dxcPsf + {dscPy - dy(Psf

(dsy

1 ^ (d!'ixy+(d''2/y'-(cPsy

§ 3-60. An alternative treatment using moving axes. The theorems

of § 3-50 can, alternatively, be obtained by the use of moving axes. This

method has the advantage that it can be immediately generalized to provide

a simple treatment of the corresponding problems for twisted curves.

The simplification obtained by this treatment is essentially due to the fact

that the curve is at each point P referred to its tangent Ft and normal Pn as

axes. Allowance must, of course, be made for the fact that, as the point P
moves along the curve, the pair of axes Pt, Pn also move ; in particular they

rotate in their own plane ; when P moves a distance hs along the curve the

angle turned through is 8^. If dyj^/ds exists at P (and is equal to 1/p) the axes

are said to have the "spin" 1/p at P. For the sake of the kinematic analogy

we suppose that P is moving along the curve with uniform unit velocity, so

that 8 may be regarded as representing the time.

To obtain the results of § 3'50 we only require a knowledge of the true rates

of increase of the components of a vector which is defined with respect to a

system of moving axes. These may be stated in general terms as follows.

Let {Xj y) be the vector components (functions of the time t) referred to

axes moving with a spin w, which is positive when it rotates the axis of x
towards the axis of y. Let {x\ y') be the differential coefficients of (.r, y) with

respect to t, and {DxlDt^ DyjDt) the true rates of change of the vector com-

ponents in fixed directions coinciding with the instantaneous directions of the

moving axes. Then*

(3-601) DxlDt=x'-y<o, DylDt=y' + X(o.

Returning to our curve we see that any set of direction cosines defines a

* The proof of this classical result is left to the reader.
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unit vector whose components may be regarded as functions of the "time" s.

The direction cosines of the axes Oa:, Oy referred to the moving axes Pt^ Pn
are respectively

{I, I'), {m, m').

These directions are fixed in space, and therefore (l, l'\ (m, m!) are the com-

ponents of constant vectors. Therefore

Ds" Ds~ Ds~ Ds

Applying 3'601, and replacing a> by l/p, we find that

. dl _l' dV_ I dm _m' dm!_ m
ds p"* ds p^ ds p ^ ds p'

But these are equations 3*51 and 3"54, which contain all the results of § 3*50.

§ 3-610. The kinematics of a rigid body with reference to the proper-

ties of twisted curves. Before leaving the subject of curvature, we propose

to sketch shortly the manner in which the properties of a twisted curve may be

obtained with the help of general geometrical theorems, usually applied to the

problems of the kinematics of a rigid body. There is a special set of three

lines at right angles through each point of a twisted curve (of which one is the

tangent to the curve), referred to which the curve has a specially simple form

near the point in question. These three straight lines or triad may be regarded

as moving like a rigid body, as their point of intersection moves along the

curve, and the nature of the curve is therefore closely connected with the

motion of the triad.
^

The discussion forms a natural extension of the preceding part of the

chapter, especially § 3*60. Proofs are, in the main, only outlined, and the reader

may, with advantage, construct detailed proofs of any of the theorems

enunciated.

It should be borne in mind in what follows that the kinematical language

may be regarded simply as illustrative. All terms employed are capable of a

purely geometrical or analytical interpretation.

In the first place, any displacement of a rigid body, with one point fixed,

may be uniquely represented by a certain rotation about a certain axis through

the fixed point, called the axis of rotation*.

Let us now regard the displacement of the body as defined by certain func-

tions of an independent variable (the time ^, say) which specify the direction

cosines of certain lines fixed in the body referred to axes fixed in space. If,

then, the differential coefficients of these functions exist at t= tQ, the axis of

rotation tends to a limit called the Instantaneous Axis as t—^ta, and the

rotation about the axis is asymptotically equal to Q (^— t^), where Q is a definite

constant, which may be called the "spin" of the body about the instantaneous

axis.

* Euler's Theorem. See Routh, Rigid Dynamics, Vol. i, Chap, v, § 1; Thomson
and Tait, Natural Philosophy, Vol. i, Part i, p. 69.
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It follows that the motion of the body from tQ to t can be represented by a

rotation Q (t-to) about the instantaneous axis, with an error o{\t — tQ\}*.

The "spin" obeys the vector laws of composition and resolution. It can be

represented as a vector whose direction is the direction of the instantaneous

axis and whose magnitude is Of. This may be established as follows.

If the body has the spin Q about an axis whose direction cosines are

{I, m, n)y a point F in the body, of coordinates (j;, y, z), has A velocity whose

components are

Q,
(A)

m n Q, n I Q, I m

y z z X X y
along the axes of Ox^ Oy^ Oz. If we agree to call (^Q, mQ, nQ) the resolved

parts of the spin Q along these axes and write 01 = ?Q, etc., then the com-

ponents of the velocity of P are

— f*>zy+ (^i^t —<»>\Z-\-(ii^x^ —a)2X-\-a>iyy

which are exactly the same components as are got by considering the body as

having simultaneovsly spins wj, 002, wg about the three axes Ox, Oy, Oz, respec-

tively.

Therefore spin can he resolved like a vector, if the direction of this vector is

the axis of the spin, and its length proportional to the spin.

In general a body may be said to have simultaneously two spins about any

two different axes, if every point P of the body has a velocity which can be

represented by the sum of two expressions of type (A). The 0^-component is

tlien . ^ai.^yj^a>^z-a>^y-{-o)^z,

or -(0)3-l-t08')2+(<B2+ «02')y-

Thus the body is really spinning about an axis and with a spin which is the

resultant by the parallelogram law of the components

(tOl-fo)/), (0)2+ 0)2'), (0)3+ 0)3'),

which is identical with the resultant by the same law of {a) (coi, ©2, 0)3) and

(6) (o)/, 0)2', 0)3'), i.e. of Q and o!.

Therefore spins may he compounded like vectors.

The relation between the direction of rotation of the spin Q, and the posi-

tive direction of the axis denoted by (l, m, n) is chosen to be such that o)i , the

spin about Ox, is positive when it tends to rotate the axis Oy towards the axis

Oz. The same statement is true of the other components when the letters

{x, y, z) are cyclically interchanged.

Again suppose that a body, moving about a fixed point 0, has an instan-

taneous axis at t= t^. If two lines fixed in the body have positions OT^, OT.^

at time t and 0T{, OT2 at time ^0, and if

T,6T^=T^6T2+ o{\t-t^\]

the instantaneous axis must lie in the plane T^OT^X-

* Routh, loc. cit. Art. 217. The necessary extension of this article is obvious.

t Routh, loc. cit. Arts. 230-232.

X The reader should draw a spherical figure, and apply the preceding properties

of the instantaneous axis.
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This completes the properties of the spin and instantaneous axis that are

required. We want one more property, the analogue for three dimensions of

3'601, concerning the true rates of increase of a vector defined with respect to

a system of moving axes.

Let {a;, y, z) be the vector components (functions of t) referred to moving

axes whose motion may be resolved into spins (^i, O2) ^3) about the instan-

taneous directions of these axes. Let (^', y', 'z') be the differential coefficients

of (^, y, z) with respect to t, and

Bji/Bt, DyjDt, DzjDt

the true rates of change of the vector components in fixed directions coinciding

with the instantaneous directions of moving axes. Then*

Dx\Dt=c(f -yB^-^zQ^,

DylDt=y'-zei-\-xez,

DzlDt=z'-xe2+y0i.

This completes the account of the kinematics of a rigid body, so far as

required for the discussion of a twisted curve.

§ 3-620. The curvature and torsion of a twisted curve. Frenet's

formulae. The set of fundamental axes associated with a point P of a twisted

curve are :

—

Axis (1). The tangent to the curve at P, drawn in the direction of s in-

creasing. This direction may be arbitrarily chosen for s.

Axis (2). The principal normal at P, which is the line through P, in the

osculating plane, normal to the tangent at P. The positive direction of the

principal normal may be chosen arbitrarily.

Axis (3). The binormal at P, which is the nonnal through P to the oscu-

lating plane, drawn in a direction such that the two triads, Pi23 and Oxyz^ are

of the same type, i.e. can be placed so that the positive directions (Pi, P2, P3),

{Ox, Oy, Oz) respectively coincide.

Referred to axes Oxyz let (?i, m^, n-^ be the direction cosines of the tangent

Pi, (Z25 ^2, ?^2) the direction cosines of the Principal Normal P2, (Z3, m^, %)
the direction cosines of the Binormal P3.

The twisted curve is assumed to be given in the form

X=^\{^\ 3/= 02 (4 ^= 03(«),

and (^1', (^2', ^3' ^^® ^^^ simultaneously zero.

If (^1'", 02'") <^3"' exist, and s, for the sake of the kinematic analogy, is re-

garded as the "time", the triad P123, regarded as a rigid body, has an in-

stantaneous axis, which lies in the plane Pi 3, i.e. normal to P2|.

* Routh, {Advanced) Rigid Dynamics, Vol. 11, pp. 1-4.

t The directions of P123 maybe defined in terms of (0^', 0./, ^3') and (0i", (f)^', <t>^").

Hence* the instantaneous axis exists. By the theorem of Ex. 19/3, if QV is the

dn-ection of the tangent at Q, and PQ = 5s, the angle between P3 and QV is ^tt + (Ss)^,

and the statement above follows from the last property of the Instantaneous Axis

established in § 3-610.
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The angular motion of the triad Pi 23 may therefore be represented by
spins - 1/r, 0, l/p about the axes Pi, P2, P3. It therefore follows that, if P,

Q are two points 8s apart, 8yj/ the angle between the tangents at P and Q, and
de the angle between the osculating planes or binormals at P and Q, and if

also (</)/", (f)2"',
03'") exist, then

Lt ^J: = l Lt
Ss—^OOS p Ss—>0OS T

We define \/p and l/V to be the curvature and torsion of the curve at P.

The direction cosines of the axes of reference O.r, Oi/, Oz referred to the

moving system Pi23 are respectively

These directions are fixed in space and therefore, for example, (^i, ?2, ^3) are the

components of a constant vector. Therefore

= ^3=0.
Ds

- Ds~
Dh
Ds

Dm^
~"'~

Ds
~"

It follows at once that

(3-621)
dh h

^-ds'"p'

(3-622)
ds T p

(3-623)
ds r'

with similar expressions for the wi's and Ti's. These are Frenet's Formulae.

In conclusion we shall establish a few of the more important formulae for

p and r which follow from Frenet's formulae.

Since 2li^= 1, 2^i l^= 0, where 2 refers to summation over the letters [l, m, n\

with similar formulae for other suffixes, we have at once

(3-624)

(3-625)

(3-626)

p2 \ds)

T^-^\ds)'

pr ds ds
*

Again, since (^3, w?3, 713) are the direction cosines of the normal to the oscu-

lating plane, it follows from Ex. 1 9, that

I3 m^ 719. ^l-^ 1

Ml

nil n{

TlX

^3 2/3^

^1 TWi h Wl3 nz

i; ini h mi ni

u m{ n{

1

Ix m^ '^\

9
k 7)12 n^

h m-i th

=p'
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= 2^i7.,' = ^lip m^ 111

nil n{

4-p2^,' mi

m{'

111

<
= P W mi' n{

h mi Til

W mi" n{'

U mi 7li z= - x' y' z'

ll m{ ni x" y" z'

Ix mi n{' x'" y'" z"

for the triad P123 or (^i, mi, Wi), {Ij, m^, 01.2), {k, ^%, %) is of the same type

as Ox^z. Dashes denote diflferentiation with respect to 5. Therefore

pr

Hence

(3-627)

§ 3 "70. Evolutes and involutes*. From here onwards we shall

need to assume more than the existence of p, and shall therefore assume

the existence and continuity of all differentials or derivates that are

mentioned. It is easy to see that, for the curve 1/ ^/{x), the continuity

of dpIds is equivalent to the continuity oi f"'(x\ and so on. Such

details are here of no great interest or importance.

Definitions. The evolute of a given cm^ve is the locus of its centre

of curvature. Any curve which has a given curve for evolute is called an
involute of the given curve.

Thus a given curve is an involute of its evolute, but we shall see it

is only one of many.

We shall make a rule of using capital letters for points, etc. belong-

ing to the evolute, X, F, P, >S^, ^, X, 1/, Z', M' (if required) having the

same meanings for the evolute that x, y, p, s, \j/, I, m, l', m have for the

original curve, and all letters referring to corresponding points. Now
we have X=x + l'p, Y=y + m'p.

Therefore

\dX= dx + I'dp + pdl' = I'dp,

\dY =dy+ m'dp + pdm = m'dpj

so that

(3-71) (dSy^(dpf.

So long as dp does not change sign, we can choose a suitable direction

in which to measure >S' on the evolute, and have

(3-711) dS=dpf.

* Picard, Traite d'Analyse, 2nd Ed. , Vol. i, pp. 350 sqq. We shall in future refer

to this book as Picard.

t This is of course an exact relation.
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Now we have as usual

(3712) dX=LdS, dY=MdS,
and as a consequence of 3-701 and 3*712 we see that L=l\ M=m.
We have thus established the following properties.

Theorem 372. The evolute touches each normal at the centre of
curvature.

Theorem 373. The arc of the evolute, corresponding to an arc of the

original curve for which p constantly increases or decreases, is equal to

the difference of the radii of curvature touching its extremities.

The last theorem follows at once by integrating 3711 ; for we thus

get S=p + c, where c is a constant.

It follows at once from 3711 that every plane curve whose curva-

ture is constant is a circle, for, since (dSf = 0, the centre of curvature at

one point is the centre of curvature at every point of the curve. There-

fore every point of the curve lies on a fixed circle.

A formula for P is easily found. For we have

P = (dS/d^) = {dp/d^l

and it is evident that \d'i^\ = \dil/\. Hence, without regard to sign,

(3-74) p = ^*=p^.
dsdi}/ ds

The converse of Theorem 372 is also true.

Theorem 375. A curve ivhich at every point touches a normal to a
given curve V is the evolute ofT(or part of it).

This is, properly speaking, a particular case of Theorem 5 '32 on

envelopes, but a direct proof is easy. For if a normal to r touches the

curve at C, then C is the limit of the point of intersection of neighbour-

ing normals, and therefore a centre of curvature of T. Hence all points

on the curve are centres of curvature of P, which proves the theorem.

§ 3 '80. Theorem 3 '81. To a given curve there belong infinitely many
involutes.

Let P (a; y) be a point on a given curve, and Q (^, rj) a point on the

tangent at P such that PQ = -{s-\- a), where a is any constant. Then

i = ,v — (s + a)l, di = - (s + a) dl,-

rj^y -(s + a)m, drj = - (s + a) dm,

and therefore d$ : dr) = r : m

,

-^

so that the tangent at Q to the locus of § is parallel to the normal at

P\ i.e. QP is the normal to the locus of Q 2X Q. Hence the given curve
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t

Q(^.v)

Fig. 11.

touches all the normals to the locus of Q, and each of its points is a

point of contact with some normal. Therefore, by Theorem 3*75, the

given curve is the evolute of the locus of Q, which is therefore an in-

volute. It is clear that we get a new involute for each value of a.

The following mechanical description of the involute is of interest.

Suppose that a thread, inextensible, perfectly flexible, and without

thickness, is wound tightly round an arc of the curve, leaves the curve

along the tangent at 0, and ends on any chosen involute at Qq. If the

thread be then unwound off the curve, being always kept tight, the end

will describe the chosen involute. For when the thread leaves the curve

at P, and the end is at Q along the tt-agent at P, we have

QP-QoO = s^TcOP,

and therefore Q is still on the involute through ft- Hence the end

describes the chosen involute.

EXAMPLES II

(1) Prove that, with due regard to sign, . .

pz=rdr/dp

in all cases, p and r being the tangential-polar coordinates of the curve.

[Lamb, Infinitesimal Calculus, 2nd Ed., pp. 401-402.]
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(2) By drawing the normals at points PQR such that arc PQ= arc QR= hs^

prove that the evokite touches the normals and that

dS=dp.

[Let Z1X2 be the mid-points of the arcs PQ, QR, and C1C2 their centres of

curvature ; then Ci is represented with an error {bsf by Ti , the intersection

of normals at P and Q, and C.2 similarly by V^, the intersection of normals at

Q and R. Hence TiV^ ^ C^C^, and rir2 tends to parallelism with the tangent

to the evolute at Ci . Hence the theorem.]

(3) Taking the tangent and normal to a curve as the axes of x and y, and

measuring s from the origin in the direction of x increasing, prove that

In particular if

\ds)o U^Vo "• V^^'-Vo '

(c?''i|/"/c?s^)o=#0, and d^'^^'^jds^^^ continuous, then

^~'
2r(4r2-l){(r-l)!}2Vc^s'7o ^ ^'

[We have x= \ cos yjrds, y= 1 ^vn^ds. Expand these expressions by
jo y

Taylor's theorem, remembering that >//'o
= 0.]

(4) If PT, QT are the tangents at P and Q, meeting in T, and the condi-

tions of the latter part of (3) hold at P, then PT\QT^r^s Q-^P.
[Use the result of Example (3) above.]

(5) If PT, QTdiVQ the tangents at P and Q, meeting in T, the circle PQT
has, as its limit as Q—^P, a circle of radius ^p whose centre lies on the

normal at P.

[If the normals at P and Q meet at K, PQTK are concyclic]

(6) If Ti, T^, ^3 are the three points of intersection of the tangents at

P, Qi, Q2, the circle TiT^T^ has, as its limit as Qi, Q^—^P^ a circle of radius

^p whose centre lies on the normal at P.

[Use Theorem 2-624.]
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CHAPTEE IV

THE THEORY OF CONTACT*

§ 4*10. The distance from a curve of a point near it. If two

curves have a common point P, it is a matter of some interest in itself,

and of vital importance for further developments, to investigate how

close the two curves lie to one another in the neighbourhood of P.

Fig. 12. Fig. 13.

More precisely, it is required to determine the order of Qi ft (Fig. 12)

when Qi-^P and Q^-^P, i.e. when ftP and ftP are small lengths

of the first order of smallness. With this object in view we proceed as

follows.

We take the curve in the form

and suppose that P (a, 6) is an ordinary point of the curve, i.e. that

fa and /ft' are not both zero. Let Q be any point (^iv, y) near P, not on

the curve, and ft any point {x, y') near P on the curve, so that

f{a,h)=f{x\y') = 0.

* ^.l.V.P., Vol. II, p. 396 (on whose exposition our treatment is based); Picard,

Vol. I, p. 342; Goursat, Vol. i, p. 530; Jordan, Vol. i, p. 417 (a treatment which in-

cludes complex points and curves).
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Let the length and direction cosines of QQ' be o- and (/, m). We
proceed to determine an asymptotic formula for o- valid as Q—>P.
We assume that/(^, i/) has as many continuous difierential coefficients

as may be mentioned. At present our requirements are second order

differential coefficients in the neighbourhood of P. We have

X =X-vl(T^ y' = y ¥ mcr,

=f{x + 1<T, y^ ma),

where ^ is some number between x and x' and r) some number between

y and y. Now when Q-->Pm any manner, / and m remaining constant

and equal to 4 and in^, or satisfying the relations l—^lo, m —> mo, we

1^^^^
/(^, 2/) ->/(«, ^) = 0,

(4-101) W + mfr; -^ IJa + mof^.

If therefore kfa + m^fj^ 4= 0,

i.e. if QQ' is parallel to, or tends to parallelism with, a fixed line L
not parallel to the tangent at Pf, then

(4-102) o-->0,

as Q-^P.
Again we have

=/(^, y) + cr (IfJ + mfy') + (Ot,

=/(^, y)+<^ {{kfd + rnjil) + (1)},

by 4-101 and 4*102, and, since

kfd + 'm^fh + 0,

__ fix yj
we have o- f^

, /./ v. .

,

as Q—>P. We can therefore enunciate the following theorem.

Theorem 4*11. IfP is an oi^dinary point on the curve fix, y) = 0,

and (T is the distance from a neighbouriiig point Q ix, y) to the curve,

measuredp>arallel% to a straight line not parallel to the tangent at P, then

o- ~ Af{x, y),

where A^O\\,as Q-^P.

* By Taylor's Theorem, for n=l.

t This condition is sufficient (but not necessary) to ensure that c —> 0.

+ By Taylor's Theorem, for w = 2.

§ Or, 'in a direction that tends to parallelism with '.

II
Or, in the notation of Orders of Infinity, p. 2,
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The following alternative form may sometimes be more convenient.

Theorem 4* 12. If (t is the sJwrtest distancefrom Q to the curve, the

other conditions of Theorem 4*11 remaining unaltered, then

as Q-^P.
If QQ' is the shortest distance from Q to the curve, it is easily

proved that QQ' is normal to the curve at Q'. As Q—^P, o-—>0, and

therefore Q' —>P, so that the direction parallel to which QQ' is

measured tends to parallelism with the normal at P. Hence

and the theorem follows at once.

§ 420. Definition of contact of order n. We now make the

following definition.

Definition*. Two curves that have an m^dinary point P in common

are said to have contact of order n at P, if the distance fofa point Q
of one curve from the other is of the (n + l)th m'der of smallness com-

pared to QP.

They may he said to have contact at least of order n if the

distance is at least of the (n + l)th order of smallness compared to QP.

Another way of stating the same thing is, of course, to say that if

o- is the distance in question, then

aX(QPT'\
or in the second case o- =< (QPy+\

Suppose that the curve on which Q is not taken has the equation

/(^, y) = 0. Then the results of the last section may be expressed as

follows.

Theorem 4 '21. The necessary and sufficient condition that the two

curves should have contact of w^der n at the point P is that, when the

coordinates of Q are substituted for x and y in fix, y), the expression

fix, y) should satisfy the relatioii

(4-211) f{x,y)^iPQr^\
as Q—^P along its curve,

* It should be observed that the definition as it stands needs justification, for it

defines a property symmetrical with respect to the two curves in terms of an un-

symmetrical property. But it will appear that the conditions of contact are sym-

metrical, so that Q may be taken on either curve, which affords the necessary

justification.

t Distance may be taken to mean either (1) shortest distance, or (2) distance

measured parallel to a line not parallel to the tangent of the other curve at P.
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The following special cases are of the greatest importance.

I. Suppose that Q lies on the curve

that the other curve is

thatP is the point of parameter ^o on Q's curve, and that P is an ordinary

point on both curves. Then, if Q is the point of parameter t,

PQ^\t-to\,

as Q—>PoYt—>t(,. Following the general rule, it is necessary aud

sufficient for contact of order n that

f{<l>^(t),<l>2{t)}X\t-tor\

Writing f{cf>,(t),ct>,{t)] = ^(t\

and applying Taylor's Theorem, it appears that if ^ (t) has n + 1

continuous differential coefficients at ^ = ^o, ^^ necessary/ and sufficient

conditions for contact of order n are tJutt

(4-212) ^W = ^' (O = • • = ^^"^
(^o) = 0, <^(-^^)

(#o) 4= 0.

II. In particular suppose that the two curves are

If we take the latter for $'s curve, and x = t d,^ the parameter, then

and, if the parameter of P is os^, the necessary and sufficient con-

ditions are

(4-213) /a (^o) =/i (^o), .A' (^o) -// (^o), . .
.

,

/2<") (^o) =/<"> (^O), /2<"^^^ (^o) +/<"^^^ (^o).

It should be noticed that these conditions are symmetrical with

respect to the two curves. Moreover this form of equation is perfectly

general unless the tangent to the curves at P is parallel to the axis

of y. But in this case the equations may be given in the form

x=fi{y), x=f^{y\

leading, as before, to symmetrical conditions. It is therefore a matter

of indifference on which curve Q is taken, and the symmetrical form of

our original definition is justified. We note in passing the following

theorems.

Theorem 4'22. Two curves which have contact of order n (i.e. of

(yrder n and of no higher order) at a point P cross or do not cross at P
according as n is even or odd.
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Theorem 4 '23. Two curves which ham contact of order n with a

third curve^ ham contact at least of order n ivith each other.

The preceding treatment does not apply directly to the case of two

curves whose equations are both given in parametric form. As this case

seldom occurs in practice, and the preceding discussion is theoretically

complete, we shall content ourselves here with a reference to Picard,

Vol. I, pp. 342 sqq. The case of the two curves F-^ios^ y) = 0, F^Qv^ y) = ^

is considered by Jordan, loc. cit., p. 420.

§ 4 "30. Osculating curves. Given a curve and an ordinary point

P thereon, and any family of curves depending onn + 1 parameters, say

(4-301) /(^, y, a^a., . .
.

, a„+i) = 0,

suppose that a member T of this family is chosen by determining the

parameters so that T has contact of the highest possible order for the

family with the given curve at the point P. Then T is said to have

osculating contact with the given curve at the2)oint P : the two curves

are also said to osculate or to be osculating curves.

Suppose that the given curve is

x = ^i{t\ y = <f>^(t),

and that P is the point t^. The conditions for contact of order n at the

point P are by 4 '212

^ (^o) - ^' (0 = • • • = ^ <"' (to) = 0,
^(»-^^) (0 + 0,

where ^(t) =f{<f>,(t), <^^{t), a^, a^, ..., «„^i}.

In general these n+1 equations will be just sufficient to determine

the n + 1 parameters in the equation of the family (not necessarily

uniquely); and in general it will not be the case that, when the a's

have been so determined, $("+i) {t^ = 0. Therefore in general the curve

(or curms) of the family

(4*301) /(ir, y, a^, a^, ..., a„+i) =

that has (have) osculating contact with a given curve at the point P,

has (have) contact of order n at that point.

The parameters of an osculating curve T are determined by n + 1

equations which written in full are

'$ (io, «i, ^2, ..., «n+l) = 0,

^'(tl, «!, ^2, •••, ««+l) = 0,
(4-3P2)

^^(")(#o, «i,«2, •••, a«+i) = 0.

F.
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We shall denote a possible set of real values of the parameters, satis-

fying these equations, by a^, og, ..., a„^i, and the corresponding

osculating curve by T. Suppose now that ^ is a curve of the family

which passes through P*, and n neighbouring points on the given curve

whose parameters are t^, ti, t^, •-., tn. The parameters (as) must

satisfy the equations

(4-303) ^(tr, a„a,, ..., an^0 = O, (r = 0, 1, 2, ..., n).

Without loss of generality we may suppose that to<ti< ... <tn. Then,

by Rolle's Theorem, there are at least n distinct values of t, between

to and tm for which ^' (t, a^, a^, ..., ^n+i) = ; by a second applica-

tion of Kolle's Theorem there must therefore be at least n — \ distinct

values of t, between t^ and #„, for which ^"
(^i, ^i, ^a, •••

, ^^i+i) = 0, and

so finally at least one value of #, between ^o and tn-, such that

^<")(#, ai,a2, ...,an+i) = 0.

The system of equations 4*303 may therefore be replaced by the equi-

valent system
'^ (to, «!, ao, ..., an^i)=--0,

(4-304)
J^'{(^o+Mi), a^a,, ...,a«+i} = 0,

^^<") {(to+ f^n), «!, 0^2, • • • , ctn+i] = 0,

where fii, /^a, ..., fi«—> as ti, t^, ..., tn—> to, i.e. as

The equations ^'304 maybe regarded as a system oi n+\ equations

determining the a's as functions of the /x's. If the Jacobian t of this

system does not vanish when

/^i = /^= ••• = /^?i = 0, ^i^tti, ...,an+i=-o-n+u

that is in general, the system 4-304 determines a unique set of functions

^1, ^2, •••, ^n+i, such that

a^-a^+^^, (r=l, 2, ...,w+l),

and 6r is a function of /xj, jUg, ..., />t„, real and continuous when

|/a,|<8, (r-1, 2, ..., Ti),

and such that ^r —> 0, (r = 1, 2, . .
.

, n),

when III, fh, •••, H-n-^O.

* It is convenient to take this form of hypothesis, but not necessary. K may be

taken to be a curve through Qi , <32 . • • •. Qn+i ,n + l points near P, and (?i , Q2 , • • . Qn+i

made to tend to P.

t Goursat, Vol. i, Chap, iii, in particular, pp. 96-97.
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It follows that, if §1, §2, ..., Qn be sufficiently near P, a unique* curve

^ of the family can be drawn through P, §i, Q^, ..., Qn, which is such

that, when Q^, O2, ...
, Qn—>P, Kh&s the limit T.

In particular if the parameters appear in /(^, ^, ai, ..., ^ri+i) in

such a way that a^, a.^, .-.., a^+i are determined uniquely by the con-

ditions for contact of order n, as is usually the case in practice, the

curve ^will be genuinely unique and tend to the unique limit Jl

With the reservations that the foregoing analysis has disclosed, we

can enunciate the following theorem.

Theorem 4*31. In general, the member of the family 4 "301, which

has osculating contact with a given curve at P, is a limit of curves of

thefamily which pass through P and n neighbouring points on the given

curve.

This theorem enables us to attach a meaning to, and renders per-

missible, the use of such statements as " Two curves cut at P in

n coincident points", statements which are formulated for the sake of

generality, e.g. in order to enable us to say that any two conic^have

four common points real or complex. Their permissibility being

established, such statements are frequently useful and illuminating.

§ 4-40. Examples of osculating curves. We have defined a tangent at

P as the limit of the chord PQ when Q—> P. Since any straight line can be

put in the form o^ + /3^ — 1 = 0, the osculating straight line at the point P is

by the last theorem the tangent.

We can of course arrive at this fact directly as follows. Suppose the

given curve is

•^=01 (0, y= <l>2ii)-

then $(0= a<^i(0+i3<^2(0-l;

and the conditions for first order contact at to are

a<j>i {to) + ^cf>2 {to) -1=0, acl>i' {t^) +/3<^2' (^ = 0,

so that the osculating straight line is

^ y 1 =0,

<t>lito) <t>2{h) 1

which is the tangent. It should be remembered that, to being an ordinary

point, ^i {to) and ^g' (^o) ^^e not both zero.

* 1\ must not be supposed that K is necessarily the only curve of the system

through P, <3i, ... <>„. iT is the only curve of this nature whose parameters are

"nearly equal to the a's ".

4—2
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We should also observe that in general the curve does not cross its

tangent. If however it happens that the contact is of the second order at ^o>

</>i'(^o) 4>2{k) =0,

<t>i'{h) <i>2'{h)

so that Iq is a point of inflexion, the curve will, in general, cross its tangent.

In §§ 3-10, 3-20 we defined the circle of curvature at a point P(^o) and
proved that, if 4>x {t) and (f)2" (t) are continuous at t^, the circle of curvature

is the limit of a circle passing through F and any neighbouring points Qi and

$2> when Qif Q^—^P. The equation of any circle can be put in the form

and a, 6, B^ are determined uniquely by the conditions of second order

contact, except at a point of inflexion *

It follows from the last theorem (as for a tangent) that the circle of

curvature and the osculating circle are identical.

Or directly, for the curve y=f{x\ supposing that/" {x) =# 0, we must have

(4-41) U-a+f'{x){f{x)-h}=^0,

[l+P{x)+f"{x){f{x)-.h]=0,

so that /(^)_6=-l±£^),

m= {l^P{x)Ylf"^{x);

which agree with the equations of § 3*10. We notice that the circle of

curvature has in general second order of contact, and therefore crosses the

curve except at points at which, besides 4*41, the equation

3/7'+/" (/-?>) =0

is satisfied. These are the points at which

(4-42) 3/'2/'-(l+/2)/"'=:0;

and it is easily verified that 4*42 is the same as dRlds= 0.

A direct corollary of Theorem 4*23 may be noticed, namely that two

curves which have second order contact at any point have the same osculating

circle at that point, and so the same radius of curvature.

§ 4-430. Extension of the theory of osculating curves. In § 430 we

defined those members of a given family of curves which have osculating

contact with a given curve at P, a*i showed that, in general, any such

* At a point of inflexion the tangent has second order contact and the curvature

is zero. This may be conveniently expressed by saying that " the radius of curva-

ture is infinite and that the circle of curvature is the tangent".
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osculating curve is the limit of members of the family which have n + l points

of intersection with the given curve, when these n + l points of intersection

tend to P. This property may be extended' as follows. Let

(4-431) • ^(^, y, «1, ^2, ...1 «n-x) =

be a family of curves, depending on n — \ parameters, all of which curves

have contact at least of order X with a given curve ^=0^ {t), y= 02(Oj ^^ ^^^

point P(^o)- Then, as before, we say that the osculating curve* of the family

is that member of the family which has contact of the highest possible order

with the given curve at P. This osculating curve* will, in general, have

contact of order 7i and, if

the conditions for contact of order n which determine the a's are

(4-432) $<^+'*>(g = 0, (r=l, 2, ..., w-X).

It will be observed that

*(^o) = ^<'-KO = 0, (r= l,2, ...,X),

for all values of the parameters, since all members of the family have contact

at least of order X. We can now argue exactly as before in § 4*30 and arrive

at the following theorem.

Theorem 4-433. In general, the member of the family 4-431, which has

osculating contact with a given curve at P, has contact of order n with the given

curve, and is the limit of curves of the family which [have contact of order

\ at P and] pass through n-X points on the given curve in the neighbourhood

of P.

As an example, the foregoing theorem may be used to identify the

Newtonian circle of curvature with the osculating circle. The Newtonian

circle of curvature (§ 3-40) is the limit an Q^P of the circle touching a given

curve at P and cutting it at Q. The foregoing discussion shows that this limit

is a circle with second order contact with the given curve at P, that is, as

such a circle is unique, the osculating circle.

§ 4*50. Similar problems in three dimensions. The treat-

ment of the distance of a point Q from a surface

f{oc,y,z) = Oy

when Q is near an ordinary point P of the surface, is substantially the

same as the treatment for plane curves. We obtain the following

theorem.

Theorem 4 'SI. IfP{a,h, c) is an ordinary point\ on the surface

/(^, ^, 2;)=0,

and a- is the distancefrom a neighbouring point Q (ic, y, z) to the surface^

* Or, curves.

t That is, a point such that/„', /^'./c' are not simultaneously zero.



54 THE THEOKY OF CONTACT

measured 'parallel'^ to a straight line not parallel to the tangent plane

where ^ # 0, as Q—^P.
Under the same conditions^ if a- is the shortest distance^

o- - -/(^, y, z)l{fr + fC + /;^)i

as Q-^P.
On the other hand, a plight complication is introduced into the

treatment of a twisted curve

fix, y, 2;) = 0, g {x, y, z) =

by the fact that there are tivo equations. Defining P, Q, Q\ and

(/, m, n) as in § 410, P and Q' lie on both the surfaces/= and ^ = 0,

and Q lies oif at least one surface, say /= 0. It is moreover assumed
that QQ' is not parallel to, and does not tend to parallelism with, the

tangent to the twisted curve at P. If P is an ordinary point, and
{u, V, w) are the direction cosines of the tangent to the curve at P,
{u, V, w) satisfy and are determined by the equations

(4-511) ufa + vfu + wfc = 0, uga + vgb + yjgc = 1

.

Since by hypothesis (/, m, n) or the limits of (/, m, n) do not satisfy

the relations

u/l=v/m = w/n,

at least one of the expressions

(fa' + mfb + w/c', Iga + mgj,' f ngj

is not zero, and does not tend to zero ; in particular if Q lies on ^ = 0,

but not on/=0,
ifa+mf^; + nfc'^Of.

We then prove that o- —> 0, and then that

f(x, y,z) + o- {If,' + mf + nf: + (? (1)} = 0,

g [x, yyz) + (T {lga'+ mgu+ ng^ + (1)} = 0.

* Or, in a direction that tends to parallelism with.

j" Since /=0 and ^r^O do not touch at P. Points at which /=0 and g = touch

cannot be regarded as ordinary points on the curve of intersection. The equations

/=0 and g= may be regarded as a pair of simultaneous equations determining say

X and ij as functions of z. Such a determination requires that the Jacobian

d{f,9)ld{x,y)

should not vanish. At a point of contact of/=0 and g=0 q\\ the three Jaeobians

^{f,0)ld{x,y), d{f,g)ld{y,z), d (f, g)/d {z, x)

vanish and no pair of coordinates can be determined by the usual theorems as func-

tions of the third.
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We thus have two expressions for o- of which one at least gives an

intelligible result.

If for example, Iga + 'mg^ + ngc is equal to or tends to 0, g ix, y, z)

will be of a higher order of smallness than/(^, y, z) [i.e. glf—> 0], and

then o- f^ A/ (a;, y, z) is correct and <t ^ Ag{x,y, z) is false. We sum

up in the following theorem.

Theorem 4 '52. With the notation of Them^em 4*51, the distance a-

from an ordinary point of the curve

f{x, y, z) = 0, g {x, y, z) =

satisfies whichever of the relations

a- ^ Af(x, y, z), cT<^A'g {x, y, z)

gives a greater value to a- (i.e. the lower oi'der of smallness).

We can now extend our definition of contact of order n to any pair

of curves plane or twisted or to a curve and a surface. They are said

to have contact of order n at a common point P if the shortest distance

from a neighbouring point Q on one curve to the other curve or to the

surface is ofthe(n+ \)th order of smallness compared to PQ.

§ 4*60. Contact ofa curve and a surface. Osculating surfaces.

After § 4'50 the following statements offer no difficulty.

Theorem 4*61. The necessary and sufficient condition that a curve

and a surface f(Xj y, z) = should have contact of order nat a common

point P is that, when the coordinates of a neighbouring point Q on the

curve are substituted for {x, y, z) in fix, y, z), f(x, y, z) should be of

the (n + l)th order of smallness compared to PQ.

If the curve is given by

^=^1 (t), y= i>2(t), z=<t>^ (t),

and ^{t)=f{<l>,(t), <l>,(t), <^3(0K

and P is the point to, the above condition reduces to

(4-611) <E> (to) = ^' (to) = . .

.

=^^''^ (to) = 0,

together with the inequality <I>("+^) (^o) =^ 0.

By taking z =f(x, y) for the surface and z ^/a (x), y =fi (x) for the

curve, we can prove that if a curve has contact of order n (and so of

no higher order) with a surface, it crosses or does not cross the surface

according as n is even or odd.

Given a surface depending on n + 1 parameters, we can define the

osculating surface to a given curve at a given point, and prove that it

is in general the limit of surfaces of its type which intersect the given

curve at P and n neighbouring points.
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§ 4*70. Contact of two twisted curves. Osculating curves.

Suppose one of the curves is given in the form

f{x, y, z) = 0, g {x, y, z) = 0,

and consider an ordinary point P. The reader can easily prove the

following theorem.

Theorem 4*71. The necessary and sufficient conditions that two

twisted curves, one of which is given by f(x,y,z) = 0, g (x, y, z) = 0,

should have contact at least of oi'der nat P* is that^ when the coordinates

of a point Q on the other curve are substitutedfor (x, y, z) in f{x, y^ z)

and g (x, y, z), both these expressions should be of the (n + l)th order of

smallness at least compared to PQ.

If the contact is of order n, one at least off(x, y, z) and g (x, y, z)

must be ofthe{n+ \)th order of smallness exactly.

If the other curve is given in the form

^ = <l>i(t\ y = <t>2(t\ z = <!>., (t),

and ^(t)=f{c}>,(t),<t>,{t),<f>,(t)},

^(t) = g{<j>,(t),cf>,{t),<f^s(t)h.

then these conditions reduce to

^^^^^^
h(to)=^'(t,) = ...=<i^(")(to)=o,

while one at least of

is different from zero. Therefore there are exactly 2n + 2 conditions to be

satisfied in order that two twisted curves may have contact of order n.

By considering two curves whose equations are given in the form

y=fi(^), z=f,(x\

y = 9x{x)> z = g.2{x),

we can show that the conditions of contact are symmetrical with respect

to the two curves ; for the conditions for contact at least of order n at

Xq are

j /i G^o) - g. Gro), // (^o) - gl M, • • • , /i<">W = ^i<'^> (^o),

^ ^\fM = g.(^o),f'(^o) = g^(^o\ ...,/2^"> W-^2<"K.a
These conditions may be stated thust: The conditions for contact

at least of order n at Xq are that y, z, and their first n differential

* P must of course be an ordinary point.

t There is an obvious case of exception. We must naturally suppose that the

tangent to the curves is not perpendicular to the .r-axis.
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coefficients with respect to x should be the same at Xq for both

curves *

.

Given a twisted curve depending on 2?? + 2 parameters, we can

define the osculating curve to a given curve at a given point, and prove

that it is in general the limit of curves of its type which intersect the

given curve at P and n neighbouring poinfs.

Given a twisted curve depending on 2/^ + 1 parameters, we can in

general only satisfy the conditions for contact of order n-1. We then

have a family of curves with contact of order n - 1, but no curve with

contact of order n.

EXAMPLES III

(1) The locus of the foci of parabolas which have second order contact at

a given point of a given curve is a circle.

[From Ex. II 6 deduce that, if p is the radius of curvature at any point of

a parabola, a circle of radius jp touching the parabola at that point passes

through the focus. All the parabolas and the given curve have the same circle

of curvature. Hence deduce the theorem.]

(2) Find the locus of the centres of spheres having second order contact

at a given point of a given curve.

[The locus is a line parallel to the binormal through the centre of curvature.

Use the results of § 3-620 to identify this locus, choosing the fundamental triad

as axes of reference.]

(3) If a surface *S^ touches a plane P along a curve C, the tangent to C at

any point has third order contact with S.

[If C is y=f{oc)^ 2= 0, the surface S in the neighbourhood of 2= can be

put in the form z= F{y—f{x)]^ F{0)=F' {0)=0, and we may suppose that

y(0)=/' (0) = 0. The tangent to C at the origin is x= t, y= 0, z= 0, and

^{t)==0-F{0 -fit)} = -K" (0) {/(0}2+ (^6).]

(4) At each point Jf of a surface ^S", and through each tangent line to the

surface at M, passes one (and only one) circle which has third order contact

with S. Show that ifM is not an umbilic there are in general ten circles which

have fourth order contact with S at M.

[Darboux, Bulletin des Sciences Math., ser. 2, tome iv, p. 348.]

(5) Define the osculating plane (after chapter iv) to a given curve at a

given point. Show that it is unique, has in general second order contact with

the curve, and is crossed by the curve. Show that this definition is consistent

with previous definitions, e.g. that of Ex. I 9.

* For the case of two curves both given in parametric form, see Picard, Vol. i,

p. 359.
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An osculating plane having contact of a higher order is called stationary
;

find the condition for a stationary osculating plane, and show that if all the
osculating planes are stationary the curve is a plane curve.

[d.l.V.R, vol. I, p. 335, vol. ii, pp. 405 and 221.]

(6) Define the osculating^line and the osculating circle to a twisted curve

and prove that they are the tangent and circle of curvature respectively,

having in general contact of the first and second orders with the given curve.

(7) If two curves have contact of order n at P, and Q, Q' are two points,

one on each curve, such that QQ'^{PQY^'^, show that PQjPQ'—^l as

Q-^P.
[Picard, vol. i, pp. 342, 359.]

(8) Find the conditions for contact of order n for the curves

^=/W, r=g{6\

and use these conditions to obtain the tangent and the circle of curvature at

any point of the curve.

CHAPTER y

THE THEORY OF ENVELOPES*

§ 510. The definition of the envelope of a family of plane
curves. Consider a family of curves depending on one parameter, viz,

(5-101) /(^,y, ^) = 0,

where f{(v, y, a) has as many continuous differential coefficients with

respect to x, 3/, and a as may be mentioned : usually the first two orders

will be sufficient. We suppose further that any singular points on any

curve (a)t that may exist, i.e. points {sc, y) satisfying /=/J =yj/ = 0,

are isolated points. We proceed to investigate the way in which the

curve (a) is placed with respect to a "neighbouring" curve of the

system, i.e. the curve (a + Sa), where 8a is sufficiently small.

Let Jtf be a point (^, y) on the curve (a) wliich is an ordinary point

of the curve, so that, for these values of cc, y, and a, at least one of /J,

fy is not zero. It follows that a region of values of x, y, and a can

be determined including M, and containing no singular point of any

* d.l.V.P., Vol. II, p. 408.

•f
I.e. the curve /(a:, y, a) = 0, for which the parameter has a particular value a.
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admissible member of the family*. The equation of the neighbouring

curve is/(^', y, « + ^a) = 0, which can be written in the form

(5-102) fix, y, a) + hafa + (Saf = 0.

The shortest distance o- of ilf from this curve satisfies the relation t

o- = A/{aJ, y, a + 8a) (1 + e),

where A=¥0, {x, y) are the coordinates of M, and e —> when o- —> 0.

Since Jtf is an ordinary point, it is easy to see that o- —> when 8a —> 0,

so that € —> when 8a —> 0. Therefore, as 8a —> 0,

cr = M/a'8a+0(8a)2} {1+0(1)}.

This distance will be of the second or higlier order of smallness if

and only if / ' = 0.

An ordinary point on the curve (a) whose distance from the curve

(a + 8a) is of the second order of smallness at least is called a

characteristic point of the curve (a). These points are ordinary

points at which /«' = 0. It may happen J that a curve (a) is entirely

composed of characteristic points, but in general they wall be isolated.

Definition. The envelope of the family

/(^, 2^, «) =

is the locus of its isolated characteristic points.

If there is an envelope, its points satisfy the equations

(5-11) f=fa=0,

and the equation of the envelope must therefore be sought for by

eliminating a between these two equations, or by solving them for x

and y in terms of a and so obtaining the parametric representation

x = x(a), y = y(a).

The complete result of such an elimination or solution is called the

a-discriminant of/. "We cannot, however, be certain that any curve

contained in the a-discriminant forms part of the envelope. For

instance, it may be possible to satisfy both equations o'll by a value

of a independent of x and y, and then the corresponding curve (a) will be

* I.e. there exists a 3 such that if

\^-x\^5, \v-y\^d, \A-a\^8,

it is never true that /*' (|, 77, A)=f' (^, 77, ^)=:0. In this region of values of {x, y), no

curve of the family whose parameter satisfies
]
^ - a| ^ 5 has a singular point.

t See Theorem 4-12.

+ This and similar statements are illustrated by examples in § 5-20.
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composed entirely of characteristic points. Such a curve will be in-

cluded in the eliminant of 5' 11, and so is part of the a-discriminant,

but not part of the envelope. Again, suppose that the family contains

a locus of singular points given by ^r = iZ? (a), y^y (a), the point on this

locus corresponding to a being a singular point on the curve (a). The
coordinates {x, y) of these singular points satisfy the equations

They also satisfy the equation obtained by differentiating the first

equation with respect to a, viz.

where dxjda. and dyjda. are determined from the equations of the

singular point locus. Therefore at all points of this locus,

f: - 0.

Hence any locus * of singular points of curves of the family will be part

of the a-discriminant, and must be distinguished from the envelope.

When, however, these two classes of curves have been identified and

discarded, any remaining curve or curves obtained in the foregoing

manner constitute the envelope of the system.

§ 5-20. Examples, (i) Consider the family

a2/+(2a + l)A= 0,

where /=0, A= are the equations of any distinct regular curves. The

equations to be satisfied by a characteristic point are

a2/+(2a+ l)A= 0,

a/+A= 0,

which are satisfied by every point ou the curves a= 0, which curve is A = 0,

and a= - 1, which curve is h=f. The ehminant is

so that in this case there is no envelope.

* In general no such locus exists. Singular points of members of the family are

all the points determined by the equations

We have assumed that such points occur for isolated values of x and y for any given

value of a. In general they will also occur only for isolated values of a, i.e. for

isolated members of the family. It is easy to see by constructing examples that such

isolated singular points may or may not lie on the a-discriminant.
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(ii) Consider the family

The curve (a) has a cusp at (0, a) and therefore the ^=0 is a locus of singular

points. But /a'=-2(y-a)=0,

so that the eliminant is x^= 0,

which is the cusp locus, and therefore not an envelope. There is in fact no

envelope.

§ 5 "30. Properties of the envelope. Suppose that the curve (a)

is not entirely composed of characteristic points. In this (the general)

case, the equations f=fa = determine a number of isolated points

(^, rf) on the curve (a) which are in general characteristic, but may be

singular points. Let (^, ^) be any point of intersection of the curves

(a) and (a + 8a) ; then ^ and y are determined by the equations

(5-301) /(or, y, a) = 0, /(a;, y,a+ 8a) = 0.

By an application of R-oUe's theorem, these may be reduced to the

equations

(5-302) /(;r, y, a) = 0, fj (^, y,a + f^)=^0,

where <
|

/a
|
<

|

8a
|

.

When fi = the solutions of equations 5-302 are the points ($, rj)

specified above. In order, therefore, to prove that the limit, as 8a -> 0,

of any point of intersection (cc, y) is a characteristic or singular point

of /=0, it is only necessary to show that any solution of 5-302 deter-

mining X and y as functions of /x, is such that x-^^ and «/ -> 17 as

/x-^0. This necessary fact follows at once from implicit function

theorems* if the Jacobian J of the system does not vanish, i.e. if

+ 0,

Jy Jo^y
i

when the variables {x, y, fx) take the system of values (^, % 0)t.

Even if, however, / = 0, it still remains true that x—>^ and 3/ —> >/ as

/u. —> 0. Consider for example a characteristic point (^, rf) at which

y = 0. We may suppose without loss of generality that an arc of the

curve/= including this point can be put in the form y-g (x). Sub-

stituting this value of y in fd we see that possible values of x must

satisfy the equation

(5-303) h (x, fx) =f: {x, g {x\ a + /x} = 0,

^
* Goursat, Vol. i, Chap, in, pp. 96, 97.

t The geometrical meaning of ^4=0 is that (^, 77) is not a singular point of /=0,
or of /a' = 0, and that the curves /=0 and/a'= do not touch at {^, 77).
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where h {x, 0) vanishes for x = ^. It may be verified that the condition

J=0 is equivalent to hx=0. The point (^, 0) may perhaps be a

singular point on the (^, //-) curve*. But whether it is or not, h (x, /x)

vanishes by hypothesis for values of ju- in the neighbourhood of /x =i 0.

We can, therefore, by the arguments of chapter vi, prove that there are

one or more real branches of the (x, /x.) curve in the neighbourhood of

($, 0) such that

where 0^ (/x) —> as /x —> 0. The corresponding value of 7/ takes the form

y^l + ^2 W,
where 0^ (/x) —> as /a —» 0, and 6^ (fx) is uniquely determinate when

6^ (/x) is known. The proposition follows as before.

We have so far excluded singular points of /=0. An examination

of Example (ii) above shows that the limit of a point of intersection

may in fact be a singular point of/= 0. Since, however, singular point

loci are excluded from the envelope, we need not discuss this case

further, admitting that it actually occurs. We have proved therefore

that the limit of any point of intersection of neighbouring curves is an

isolated characteristic (or perhaps singular) point.

The converse of this proposition is not always true. We shall content

ourselves with proving it with the help of the explicit assumptions that

/4=0, and /aa" 4= Ot. We wish to prove that if (^, tj) is such an isolated

characteristic point on the curve /= 0, and (x, y) a neighbouring point

on the curve, then a value of 8a can be found such that

fix, y,a+ 8a) = 0,

and 8a —> as ^ —» ^ and y -^y] along /(^, y, a) ^ 0. Since /+ 0, there

exists a unique solution of the equations

/(•2^, y^ a) = 0, /a' [X, 1/, a+fl) = 0,

near (^, rj), such that

x = i+e,{fA.), y = >7 + ^., (/x),

where 6^ (/x) -> and 6^ (/x) — as /x —» 0. Since faa" 4= 0, 0^ (/x) and

$2 (/tx) are not identically zero. Given a point (x, y) near (^, ry) on/=
we can therefore find a unique number /xj , near 0, such that

/a'(^, 3^, a+/Xi)-0.

* The point will be a singular point when in addition

t When J=0 for all values of a, there may be an envelope in spite of the fact

that neighbouring curves do not intersect. See § 5-50. We call points at which J+
and/aa" + completely ordinary points. See § 5-310.



THE THEORY OF ENVELOPES 63

By an application of Taylor's theorem fJi {oc, y, a + ju) .can be cast

into the form

(5-304) a{x-^){l + ei) - 6/x (1 + €2).

In 5'304, y has been eliminated by using /=0; a can only vanish

with / and therefore a^O; b can only vanish with/aa" and therefore

Z> + ; and Ci, €3 —> as .^ —> ^ and ^—^0..

Now since f(x, y, a) = 0,

f{x, y,a + fx,)= f: {x, y,a + fx) dfi^

Jo

= afX2 {x - ^) (1 + eO - i V2' (1 + 0-

Since 5*304 must vanish for /a = /Xj, a{x- ^) and 6/x will have the same

sign, which may be supposed positive. It follows that, as /w-i is unique,

/a' {x, y,a + ii) is positive when ^ /x < mj and vanishes and changes sign

at /txi. Therefore f{x, y,a. + //j) > 0, while by taking /xg sufficiently large

we can ensure that f{x, y, cl + fi^ < 0. At the same time the requisite

value of /X2 can be made as small as we please by suitably diminishing

I

^ - ^
I

. There exists therefore a value of 8a, such that

/ (.r, I/, a + 8a) = 0, (I
/Aj

I

<
I

8a
I

<
I

/X2
I ) ;

moreover 8a —> as x—^^, y—^Vj and therefore the proposition is

proved. We summarize this discussion in the following theorem.

Theorem 5 '3 1 . The locus ofthe limits ofthe in tersections ofneighbour-

ing curves is in general the envelope, but may be a locus of singular

points. Conversely, the envelope is in general (/=t=0, /aa"4=0) the locus

of the limits of these i^itersections, but there may be an envelope when

neighbouring curves do not intersect.

It should be observed that "the locus of the limits of the inter-

sections of neighbouring curves which are not singular points " is not

suitable for a definition of the envelope of the system, for, as is shown
in § 5*50, on that definition a curve is not the envelope of its circles of

curvature.

§5*310. Properties of the envelope continued. Contact with
members of the family. We now proceed to consider the behaviour

of the envelope in relation to members of the family at ordinary points

of the envelope. It is necessary to start with a warning. It is natural

for ,such arguments to take any arc of the envelope as expressed in

the form . . , .

x = x{a), y = y{a\
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where a is the parameter of the point on the envelope corresponding

to the curve (a). In order that we may do so without detailed investi-

gations, it is necessary to apply the Implicit Function Theorem to

the equations

fix, y, a) - 0, fd (^, y, a) = 0,

so as to express x and y as functions of the parameter a.

This is possible as above* if

(5-311) J=\IJ fad' ,4=0

\ f f " \

I
Jy J<^v

\

for the system of values, {x^, y^, a^) say, in the neighbourhood of which

we wish to discuss the behaviour of the envelope. The behaviour of the

system in the neighbourhood of an isolated point at which J"= is very

interesting geometrically, and we shall return to this case later. When
J=0, we cannot assert without further investigation that the envelope

can be represented by x^

x

(a), y^

y

(a), where x (a) and y (a) have

differential coefficients at a = uq. In general we shall find that in such

a case x (a) and y' (a) tend to infinity as a —> ao. We therefore assume

for the present J=^0.

Let Mhe a point on the envelope, of coordinates (x, y) and para-

meter a, at which J^O. It is therefore an ordinary point on the

curve (a). Then in the neighbourhood of this point the envelope can

be put in the form
x = x{a), y=y{a),

where x\a), y'i") exist and are continuous.

The coordinates of 31 are functions of a which satisfy identically

f(x, y, a) = 0, fa' (x, y, a) = 0.

On differentiating with respect to a, we find that they also satisfy

^'W/x +y(a)/; +fa' =0,

Now fa' =^ 0, and therefore, since /=t= 0, the necessary and sufficient

condition that x(a) and /(a) should not be simultaneously zero is

/aa" + 0.

Let us therefore suppose that iW is a point on the envelope at

which /+ and faJ' 4= 0. Such a point may be called a completely

ordinarypoint ; and in general all points will be such with the exception

of isolated points. At M
xX<^)fd+y'Wfy=o,

* Goursat, loc. cit.
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but as neither both /«' and fy are zero, nor both x'{a) and ?/'(«)> it

follows that the tangents to the curve and the envelope are parallel,

i.e. identical. Therefore the envelope touches the curve (a) at M.
Conversely, let ^ be a curve which at every point* touches a

member of the family. Then E is a locus of points of contact with

members of the family, and therefore, assuming that in general only one

member of the family touches E at a given point, the coordinates {x, y)

of a point of E may be expressed as functions of a, cc (a), y (a) say,

which satisfy identically

/(<^, y, a) = 0.

By definition, the curve E has everywhere a tangent, but we cannot

therefore assert that x'(a) and ^(a) must in general exist and be not

both zero ; and in fact no obvious method of proof on these lines

presents itself. We therefore abandon the symmetry of the parametric

representation and proceed as follows.

Let (^0, ^o) be any point on E at which E is touched by the unique

member of the family (ao). Let {x, y) be a neighbouring point on E at

which E is touched by (a). We have therefore

/(^o, ^0, tto) = 0, fix, y, a) = 0.

Now let {xj y) —> {xq, y^. Since f(x, y, a) is a continuous function of

the variable.s,

/(^, y, a) =/(^o, ^0, a) + (1).

Therefore, as (x, y) — (i^o , ^o),

/(^o, 2^o» a)->0.

If tto is the only root of the equation /(^Fo, ^o, <*) = 0, then, since

/(^O) 3^oj «) is a continuous function of a, it follows that a—xxq as

[x, y) — (xq, y^. In other words, neighbouring points on the curve E
correspond to neighbouring values of a. This result however still

remains true when the root a^, is not unique, provided that, as we have

assumed, the curve (a^) is the only member of the family which touches

JS'at (^o,^o).

Suppose for simplicity that there is only one other root a^ , so that

/(^o, 3/oj "i) = 0, but the curve {^^ does not touch E at (i^oj ^o). The
argument can be extended at once to the case of any finite number of

other roots, so that there is no loss of generality. In this case we can

establish as before that, as (^, y) —> (a?oj y^^ either (1) a—»ao, or

(2),a—>ai, or (3) tlwre exists an infinite sequence of values of a for

* With the possible exception of isolated points.
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which a — tti, while the remaining values are such that a—^a^. Cases

(2) and (3) may be ruled out by the following arguments. In the

neighbourhood of (^o, 3/0), ^ is a curve having everywhere a tangent.

Since this tangent is always also the tangent at (jjc, y) to the curve

/(^, ^, a), for values of a in the neighbourhood of a,, and a^, we may
suppose without loss of generality that it is never parallel to the axis

of I/. Hence we may suppose that E is represented by an equation of

the form y = g {x\ where g{x) exists at all points of the interval. Let

?Wo and nfix be the slopes oi f{x, 3/, a^) = and /(^, 3/, aj = at (^o, 3/0).

Then mo^mi. Moreover g'{x^=mo and, in cases (2) and (3), g'{sc)

assumes a series of values tending to m^ for values of x in the neighbour-

hood of Xq. This however is impossible by a theorem due to Darboux*,

which states that, iffix) has a differential coefficient at all points of an

interval {a, b),f'(x) cannot passfrom one value to another in this interval

without assuming every intermediate value. It follows that a —> ao in

all cases, which is what we required to prove.

Now consider the points {x, y, a) and {x \-hx^ y ^hf^ a.-^ Za) on E.

Then E has a tangent at (^, y^ which may without loss of generality be

supposed not parallel to the axis of y.

Since /(^, y, «) = 0, /(^ + hx^ y + hy, a + 8a) = 0, we have

W^{^) + ^yfm^Wa{e)-=o,
where /a,' (^), ... , denote fx{x + BKt, y + 6hy, a + ^8a), ... , and < ^ < 1.

Now let 8^, 8y — along E. We have

But /;(^) + g/;(^)_^/; + 3,7;,

where y refers to the curve E. The limit y exists because E has a

tangent at {x, y). Since E touches fix, y,a) = at (x, y\ fj + yfj = 0.

Also /a' (^) ->/a'. Therefore either /«' = 0, or Sa/8^ -> dajdx = 0. The

latter alternative may happen at isolated points, but cannot happen

everywhere in an interval unless the curve E is identical with a

member of the family. Hence in general fa ^ 0.

If follows that E is a locus of isolated characteristic points or

of singular points, and this latter case may actually occur f. We have

therefore proved the following theorem.

* d.l.V.P., Vol. I, p. 97.

t The family of curves 7/2= (a; - a)^ have cusps at (a, 0). The line «/ = touches

all members of the family and touches one and only one at every point, and is also

the cusp locus.
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Theorem 5'312. The envelope touches the curve (a) at all its isolated

characteristic points that are completely ordinary points oj the envelope.

Conversely, a curve which touches just one member of the family at

every point is in general the envelope {or a part of it), but may be a locus

of singular points.

This theorem supplies a possible alternative definition of the envelope, as

"the most complete curve that touches a member of the family at every point,

and which does not contain a locus of singular points". The theory is de-

veloped from this point of view by Goursat (Vol. i, p. 511); owing however

to the difficulty of avoiding a priori assumptions as to the nature of ccf (a) and

y (a), in the proof that on the envelope /a' = 0, this definition does not appear

to be so suitable as the one chosen here.

A corollary of this last theorem is that any curve is the envelope of its

tangents. A direct proof is not without interest. Let y=f{x) be the given

curve, so that the tangent at the point a is

y-f{a)-{x-a)f'{a) = 0,

and the coordinates of the characteristic points satisfy

(^-a)/"(a) = 0.

If /"(a)=0, every point on the tangent, which is then inflexional, is a char-

acteristic point : discarding this case, the isolated characteristic point of the

tangent at a is the point x= a,y=f{a\ and the locus of these points is the

given curve.

§ 5-40. Order of contact of the envelope and the curves. Meaning
of J=0. We have already proved that, at any completely ordinary point a of

the envelope, the envelope touches the curve (a). It is easily seen that the

contact is necessarily first order contact at such a point, for «/'= is a necessary

condition for contact of higher order than the first*.

We now consider a point a on the envelope which is an ordinary point of

the curve (a), but at which ^=0 ; in general /««" 4= at such a point ; we shall

suppose that this is the case. Near such a point we cannot assume at once

that the parametric representation of the envelope x= x{a), y=y (a) is possible,

where x (a) and y (a) possess differential coefficients. We can prove however

by differentiating along the envelope, exactly as in the latter part of Theorem
5*312, that a=daldx exists at this point and, because J=0, is in fact zero, and
that the envelope touches the curve (a).

One aspect of the geometrical meaning of the conditions J= 0, f^a" 4= at

an isolated point of the envelope is therefore that the distribution of points

of contact of members of the family along the envelope is exceptionally sparse

near such a point.

We can however go further than this. We can prove step ,by step, with

suitable assumptions as to the nature oi f{x, y, a), that a", a", ... exist when

* A proof is sketched in Ex. IV, 3.

5—2
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we differentiate along the envelope. Now the envelope satisfies identically

f{x, y,a)= and /a (^, y, a)= 0, and therefore satisfies identically

(5-401) fx'+2/'fv+<^'fa=0,

(5-402) /ax"-+-y/av"+ a7aa"= 0.

Differentiating 5-401 again along the envelope, and using 6-402 to simplify the

result, we obtain

(5-403) fj' + 2y'f^y" ^y'\fyy"+y"fy' - a'^faa"+ a"fa'= 0.

Differentiating 5*403, and using the facts that a'= at the point a, and that, as

always, fa = 0, we obtain

(5-404) f^^'"+ Zy'f^y'"+ 3y'2/xv/" +y'\fyvy"

+ Wfxy" + ^y'y"fvy" ^y"'fy = 0.

Equation 5'403 itself reduces to

(5-405) fj' + 2y'fJ' ^y'^fy^ +y"fy'= 0.

But 5-404 and 5-405 are precisely the expressions we obtain when we de-

termine y" and y'" for the curve (a) by differentiating fipc^y, a)= with a con-

stant. It is easily verified that in general y^ is different for the curve and

the envelope. At this point therefore the curve (a) and the envelope have in

general contact of the third order, i.e. two orders higher than normal. We can

collect these results into the following theorem.

Theorem 5*41. At isolated points a on the envelope at which J=0, /««"#= 0,

and the curve (a) has an ordinary point,

(i) the envelope has in general third order contact with the cui've (a),

(ii) daldx=daldy=0% so that the distributio7i of points of contact of

members of the family along the envelope is exceptionally sparse-^.

The condition /aa"= 0, e/4=0, is in general satisfied at isolated points of the

envelope. On referring to § 5*310, we see that this condition implies that

x' {a)=y' (a)= 0, SO that the point is a singular point on the envelope. It is in

fact in general a cusp of the first species (see Chapter VI).

If both the conditions «7=0 and/aa" = are satisfied at an isolated point of

the envelope, the state of affairs is more complicated. In general the envelope

has two branches through the point, both of which have second order contact

with the curve (a). In certain cases one of these branches may coincide with

the curve (a) J. It is then no longer part of the envelope, but still remains

part ofthe a-discriminant. For the further study of these and other singularities

of the envelope, or more generally of the a-discriminant, the reader should

refer to Bromwich and Hudson, loc. cit.

* Assuming that the tangent to the curve or envelope is parallel to neither axis

of coordinates.

t In this connection the reader should refer to a paper by Bromwich and

Hudson {Quarterly Journal, Vol. xxxiii, p. 98) called " The discriminant of a

family of curves or surfaces."

:J:
An inflexional tangent is the simplest example. The reader should verify

that J=0 and faa" = in this case. See p. 67.
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§ 5 "420. Envelopes with contact everywhere of high order.

We have so far considered the behaviour of the envelope at isolated

exceptional points. It may happen however that every point is ex-

ceptional, so that /= for all values of a. By definition, no arc of the

envelope can coincide with any member of the family, and therefore a'

can only vanish at isolated points. We have as usual, differentiating

along the envelope,

fo.1' + y fay + »'/*«" = ^y

so that J= Ofo)' all values of a if and only iffaa" = Ofor all values of a.

In general/= and/aa" = will determine (by the implicit function

theorem) a parametric representation of the envelope, x = x (a), y = y(o-),

possessing differential coefficients near any value of a except those iso-

lated values at which

(5-421) Jl^\fJ faaj" =0.
I /•/ f

"'I

1 Jy Jao-y

When /i + O, the point is an ordinary point on the envelope unless

Jaaa ^^ v.

The conditions for contact of order n between the envelope and the

curve (a) are, by 4*212,

where
^{t,a)=f(a^(t),y{t),a).

We observe that the equations

(5-424) ^(t,t)=:0, ^^'(t,t) = 0, ^aa"(t,t) =

are satisfied for all values of t, where ^J {t, t) denotes

Making use of the identities 5 '424 and the similar identities obtained

by differentiation, we verify that 5*422 and 5-423 are satisfied for w = 2.

The envelope therefore has in general second order contact with all

members of the family. At isolated points at which J^ = 0, faad" 4= 0,

we can show as in the last section that a = and the envelope has in

general third order contact with the curve (a). In this case the contact

is only one order higher than usual.
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Conversely, if the contact is in general second order with all mem-
bers of the family, then J=0 and /»/'== for all values of a, for other-

wise contact is in general of the first order only. It therefore follows

that the necessary and sufficient conditions that the envelope should in

general have contact of the second order with all members of the family

are that

/aa" =
for all values of a, and

except for isolated values of a.

The same arguments can be extended step by step to prove that the

necessary and sufficient conditions that the envelope should in general

have contact of order n with all members of the family are that

— =
8a"

(5-425)
ay
da?'

r all values of a, and

(5-426)
da"

except for isolated values of a.

It should be observed that these conditions 5*425 and 5*426 bear no

obvious relation whatever to the necessary and sufficient conditions for

contact of order n at an isolated point of an envelope for which contact

is in general of order n-r^ where r ^ 1*.

In accordance with Theorem 4-22, the members of the family in

general cross the envelope at their points of contact when n, the order

of the contact, is even, and do not cross the envelope when n is odd.

It can also be shown that in a family for which n is in general odd,

neighbouring curves must intersect, while in a family for which n is in

general even neighbouring curves do not intersect!. To prove these

assertions an extension of the analysis of § 5-30 is required to the more

complicated cases in which J = 0. We shall content ourselves here with

proving that, when n = 2^ neighbouring curves do not intersect. In this

case we have J= 0, fad' = everywhere and in general /aaa'" =1= 0.

The proof of § 5*30 that, when w = 1, neighbouring curves must inter-

sect depends essentially on the fact that, if {x, y) is any given point on

* It is stated by Goursat (Vol. i, p. 549) in an example, that if 5-425 and 5-426

are satisfied for an isolated value a, they are the conditions for a contact of order n
between the envelope and the curve (a). This is incorrect.

t This is geometrically obvious, or almost so, as can be seen by drawing a figure,
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the curve (a) near a characteristic point, a value fii of /a can be found,

near 0, such that

/a'(^,2^, a + Mi)

vanishes and changes sign when /a passes through the value fii. The

failure of the argument for n = 2 (and in general when n is even) is due

to the fact that the lowest order terms in /«' (x, y^a + i*) (except for a

constant factor) form a perfect square, and no value of i^ exists for

which /a' changes sign near /x = 0. Taking for simplicity the point (0, 0)

as the characteristic point under discussion on the curve (a), it is easily

verified that the lowest order terms in the expansion of fa (^, y, « + /*),

near (0, 0) and near fi = 0, are second order terms in oo and /m, which

can be put in the form

^ {^ ifa^" + 2yfa^" ^y'fay^"-^y"fay'\

t- 2^/X (/««x"' + y'faay"\ + \^^ (/aaa'")oK

where y and y" refer to the curve (a). But both y and y" in this case

have the same values for the envelope at (0, 0) ; also at all points of the

envelope fa =faa' = 0. By differentiating these equations along the

envelope we obtain finally

\Jaxx '^'^y JoiXy '^ V Jatyy -^y Jay )o = ^0 \Jo.aa )oj
/ /•/// / fltt \ / / fill N

\J aax'^y J aayjo — — O.Q \^J aaajoj

where a^' = {dajdx^, taken along the envelope ; in general ao' is not zero.

The second order terms therefore reduce to

—^ (/««a'")o (^oo' - i^y.

It follows that, for any given values of x and y on the curve (a) near

(0, 0), fd cannot change sign for any value /x such that
|
ft |

<^, where

J. is a constant independent of x and y. For such values of /x,
/ fa'dyi.
Jo

can never vanish. No value therefore of Sa can be found for which

f(x, y,a + So) = 0, while 8a tends to zero as (x, y) tends to a characteristic

point on (a). Therefore no characteristic point is the limit of points of

intersection of neighbouring curves. If such curves intersect at all

they can only do so near a singular point. These results may be sum-

marized thus

:

Theorem 5*427. Under the conditions 5'425 and 5*426, ths contact

hetimen the curve and its envelope is of order n, except at isolated points

at which the order may he higher. Neighbouring curves (a) in general

intersect and do not cross the envelope when n is odd, and do not ifitersect

but cross the envelope when n is even.
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§ 5-50. The envelope of a system of circles. We will now give an
example of a family for which neighbouring curves do not intersect, but which

still possesses an envelope. Such a family is formed by the circles of curvature

of any plane curve. For since the plane curve touches each circle at an ordinary

point, it is the envelope (or part of it). Moreover, on referring to § 3'70, we
see that the difference between the radii of curvature at neighbouring points

is equal to the arc of the evolute between the two centres of curvature, and is

therefore in general greater than the distance between these centres. One
circle therefore completely encloses the other, and so there are no points of

intersection.

It follows from § 5-420 that contact between members of the family and the

envelope must in such a case be of even order, and therefore the typical case

of an envelope not generated by limits of points of intersection is that in which

this contact is in general of the second order. A family of circles is the

simplest possible family of the kind, for the three conditions of second order

contact require just three arbitrary functions of a in the equation of the curves

of the family.

It is of interest to study a family of circles directly. We shall, among
others, arrive at the foregoing results, and also find that a given curve is the

complete envelope of its circles of curvature, a point at present in doubt. Let

the system be

(5-501) {x-ay+{^-by-R^= -

where <x, b, R are functions of a. There are no singular points on any member.

The characteristic points are the intersections of this circle with the straight

line

(5-502) {x-a)a'-\-{y-h)h' + RR'=0.

Denoting the locus of the centres of the circles by (7, we see that this line is

perpendicular to the tangent to C at a, i.e. the point a (a), h (a), and distant

from this point by

RR'lia'^+ h"^)^*.

This is greater than, equal to, or less than R according as R'^ is greater than,

equal to, or less than a'^ + fe'^, and there are no, one, or two characteristic

points respectively. In the first case there is no envelope for that part of the

family, and, if R'^ > a"^ -f 6'^ for all values of a, no envelope at all. Next suppose

that for all values of a, R'^<a'^+ h'^. There is then an envelope, composed

in general of two branches ; an obvious example is provided by the case

of a moving circle of constant radius R'= 0. Finally suppose that for all values

of a

(5-51) /2'2= a'2-t-6'2.

* Supposing a' and h' not both zero. If they both are, and ii'4=0, there is no

characteristic point, but if also R'= 0, this particular circle is entirely composed of

characteristic points. This can only happen for isolated values of a, which may be

neglected.
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There is then an envelope composed of the points of contact of 5*501 and 5 "502.

It follows that {x-a) a' + (^-b)b' + RR'= is the tangent to the envelope at

the characteristic point of a, and therefore that normtils to the envelope are

tangents to C. In other words C is the evolute of the envelope, and therefore

the circles are the circles of curvature of their envelope. It is easily seen that

the condition 5*51 is also necessary for this relationship. Any plane curve is

therefore the complete envelope of its circles .of curvature.

§ 5*60. Other rules for envelopes. (1) The equation of the

family may be given in some other form such as

(5-601) /(^,.y,a,/3) =

with the condition

(5-602) <i>
(a, p) = 0.

We apply the usual rule, regarding /8 as a function of a, and must

therefore have

(5-603) J''^ -^^f^' = ^'

But we also have

(5-604) '^'^^^^^'^^

and we have therefore to eliminate a, ft ~ between the equations

(5-601—5-604), or, what is the same thing, a and ^ between

(5-61) /=0, <^ = 0, "^) = 0.

All the former exceptional cases must be taken account of, with the

addition of singularities of </> (a, /3) = 0, but these, being isolated points,

are not of importance.

(2) The curves may be given in the parametric form

(5*611) x = <j>x{t^a)^ y = <j)^{t,a).

We can apply the usual rule, regarding ^ as a function of y and a. We
have therefore

dt da da '"

corresponding to fj = 0, and also the identical relation

which lead together to

d<f>2 dt d<f>2 ^
dt da da~ '
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The envelope is therefore to be looked for, with the usual precautions,

among the results of eliminating t and a from

(5-62) x=<^,{t,a\ ^ = Mt,-\ ^-^^ = ^'

EXAMPLES IV

(1) The envelope of the straight liTie

(!) a; cos a+y sin a=f (a).

The characteristic point lies on the straight line

(2) - 07 sin a +y cos a=f' (a).

Show that (i) the line (2) is normal to the envelope, (ii) the envelope of the

line (2) is the evolute of that of the line (I), and (iii) that the curvature and

arc of the envelope of the line (1) are given by

p= ds/da==±{f{a)+f"ia)}.

(2) Families of circles, such that R'^= a'^+ h'^ (§ 5-50).

The family is

{x-af-\-{t/-hf-R^=0,

Calculate hR and {(8a)2+(56)2}2 corresponding to a positive change of 5a in a,

as far as terms in {baf, and thus verify that neighbouring circles do not intersect.

[We find m==Aba+B{baf-^ C^ idaf+ {8a)\

{(aa)2+ (86)2}^= A8a+B (8a)2+ C2 {daf+ (8a)\

where A = {a'^-hb'^)K B={a'a"+b'b")l2A,

Ci= {(2a'a'"+ 2a"2) ^2_ (2a'ay}l6A%

6'2={(^2a'a'"+i2 a"2) A^-} {2a'a'y}/A^,

where 2 denotes summation over the functions a and b ; so that

which is positive when da is small.]

(3) Curvature of the envelope. Let y\ y" ... denote the derivatives ofy along

the curve (a), and y/, yl' ... the derivatives along the envelope. Then

y=y6'= -fxlfv,

and the difference of the curvatures is given by

Pe 9 (l+y2)f*

Differentiating /=0 twice along the curve (a) we obtain

(1) /.." + yf.y'+ f'fy^' +y"fy=0 \

and differentiating along the envelope

(2) /./+ 2//^''+/2/^;'+yeV;+2a7,/ + 2ayA;'+ a'2/«a''+ a'7«=0.
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Subtracting (1) from (2) and using the facts that for the envelope

we have

We thus arrive as before at the fact that the curvatures cannot be equal unless

J—0. Equality of curvature at a point of contact is equivalent to second

order contact.

(4) Verify that, for the family of circles

the condition J=0 reduces to R'^=a'^-\-h"^.

(6) Show that the curvature of the curve whose tangential equation is

tfi {Ij m) = Q is

(^0/4-m<^^7

at its point of contact with lx-\-my=\.

[The curve is the envelope of lx-{-my= \ under the condition </>(?, m)=0.
Take I as parameter and let m^, wi2, ... be the derivatives of m with respect to

/. We have

The coordinates of the characteristic point satisfy

la;+my= l, x-k-miy=0.

Apply the general formula of Example 3, remembering that l/p= 0.]

(6) li A, B, C are functions of x and y, show that in general the envelope

of Aa^+2Ba+ C=0 is B^= AC. Examine the exceptional cases. [See § 5-20.]

(7) The envelope of the family

is to be found in the result of eliminating a, ^, y from these equations and

8 (a, Ay)

(8) The first positive pedal of a plane curve is the envelope of circles

described on the radii vectores as diameters. The first negative pedal is the

envelope of a straight line drawn through any point of the curve and at right

angles to the radius vector to the point. [Lamb, Infinitesimal Calculus,

2nd ed., p. 382.]

(9) Caustics. The caustic of a curve C with respect to a luminous point A
ia defined as the envelope of the rays from A after reflection by C. Prove that

the caustic is the evolute of the pedal, with respect to J, of the curve C",
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similar to C^ which is obtained by producing each radius vector from A to the

curve C a distance equal to itself. Deduce that

I r R cos i

T being the length of the incident ray AP, I the length of the reflected ray

from P to the caustic, R the radius of curvature of C at P, and i the angle of

incidence.

In particular, if the rays of light are parallel

l= \Rco^i,

and the normal to the caustic passes through the middle point of the radius of

curvature of C.

[The normal to the pedal of a curve passes through the middle point of the

radius vector (Ex. 8). Hence the reflected ray is normal to the pedal of C with

respect to A . Use the relation between the curvatures of a curve and its pedal

(d.l.V.P., Vol. I, p. 323, Ex. 8).]

§ 5 '70. Similar problems in three dimensions. Many three-

dimensional problems on envelopes are direct extensions of the two-

dimensional ones already treated. We shall consider some of the

simplest.

( 1 ) Envelope of a family of surfaces

J (^, y, z, a) = 0.

We define a characteristic point exactly in § 5*10 and show that it is an

ordinary point of the surface satisfying

(5-71) /-O, /a' = 0.

For certain values of a, the whole surface may be composed of

characteristic points*, but in general there will be an isolated curve of

characteristic points lying on each surface/= 0. Such a curve is called

the characteristic of the surface f^ 0. We then define the envelope

of the family as the surface generated by the characteristics. Following

the Hnes of §§ 5-10—5*60, we then prove that the envelope is obtained

by eliminating a from/= 0, fa = 0, taking care to discard the stationary

surfaces, and surfaces composed of singular lines of the surfaces (a);

that when neighbouring surfaces intersect, the limits of the curves of

intersection are, in general, characteristics, but that envelopes may exist

when neighbouring surfaces do not intersect ; that a surface (a) touches

the envelope at every point of its characteristic; and that a surface

consisting of curves of contact with members of the family is in general

* These may be called "stationary surfaces," if a name is required.
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the envelope (or part of it). An alternative enunciation of the last

assertion is that a surface which, at every point, touches one of the

surfaces of the family is, in general, the envelope (or part of it).

In particular, a surface whose tangent plane depends on one para-

meter, is the envelope of its tangent plane. Such a surface is, of course,

a developable surface.

(2) Envelope of a family of surfaces

f{pc,y,z,a,p)=^0.

We define a characteristic point as an ordinary point of the surface

whose distance from the surface

is small compared to
|

8a
|
+

1 8y8 1 . Such points are ordinary points

satisfying

(5-72) /=0, fj = 0, /^' = 0,

and are, in general, isolated, but whole surfaces or whole lines on

particular surfaces may be composed of characteristic points. The surface

composed of all isolated characteristic points or lines of characteristic

points is called the envelope. As before, the envelope may or may not

be generated by the limits of points of intersection of the surfaces

/(^, y, z, «, P) = 0,

f(a^,y,z,a,p + 8p) = 0,

and touches every surface of the family. Conversely, a surface touching

every member of the family is, in general, the envelope (or part of it).

In particular, a surface whose tangent plane depends on two para-

meters {i.e. any surface) is the envelope of its tangent planes.

(3) Envelope of the family of twisted curves

(5-73) f{x,y,z,a) = 0, g{x,y,z,a)^0.

We define a characteristic point of the curve (a) as an ordinary point

whose distance from the curve (a + 8a) is of order higher than the first

in 8a. We find, by the former method, that such a point must satisfy

(5-731) /a' = 0, ga=0.

In general, the equations 5'73 and 5'731 are incompatible (except

•perhaps for a number of isolated values of a), and there are no

characteristic points. But if, as may happen, the equations 5 '73 and



78 THE THEORY OF ENVELOPES

5*731 effectively reduce to three, and so can be satisfied by the con-

tinuous functions of a

the twisted curve, of which the above functions give the parametric

representation, is called the envelope of the family. We can then prove,

as before, that the envelope, if it exists, touches all the curves at their

characteristic points, and, conversely, that if a curve exists which at

every point touches one member of the family, then this curve is, in

general, the envelope (or part of it).

There is one important particular case in which the envelope in

general exists, and that is the case of the characteristics of a family of

surfaces depending on one parameter. The characteristics satisfy the

equations

/=0, /a'-O,

and therefore the four equations 573 and 5*731 reduce in this case to

three

(5*74) /=0, /a' = 0, /aa" = 0,

which in general will just determine the isolated characteristic points

whose locus is the envelope. This curve which touches all the character-

istics of the family, lies on the envelope and is called its edge of re-

gression*.

For proofs of many of these assertions and for further developments

in the region of Solid Geometry the reader is referred to de la Valine

Poussin, Picard, and the paper (already quoted) by Bromwich and

Hudson.

EXAMPLES V

(1) The edge of regression has, in general, second order contact with any

surface of the family on the characteristic.

[Use Theorem 4-61.]

(2) Discuss the problem of the envelope of a moving sphere, whose

centre lies on a twisted curve, (i) when the radius is constant {une surface

canal), (ii) when the radius varies.

[Extend § 5*50 from circles to spheres.]

* Fr. Varete de rehi'oussement. Plane sections of the envelope have in general a

cusp {point de rebroussement) where the plane cuts this curve. See Picard, vol. i,

p. 322.
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(3) The wave surface. The envelope of the plane

where a^+^^+y^=l

a^ /32 72
and pZ^. + p-Zb^ + p^.=^^

is the surface

^. +
,-|f'i

+ ^.=o, (-^=.^+^^+^^).

(4) The direction cosines of the normal to the surface obtained by-

eliminating a between /(^, y, 2, a)=0 and g {x, y, 2, a)=0 are given by

d {x, a) ' 8 (y, a) * a (a, a)
*

Obtain the corresponding result for a surface obtained by elimination of two

parameters between three equations. Apply these results to the proof of the

contact of a surface with an envelope.

(5) The envelope of

where <^(a, /3, 7)= 0, >/.(a,^, y)= 0,

is given by

/=«' *=«' ^='' "^iMh
(6) The envelope of

where <^ (a, 3, y) = 0,

is given by
/=0, <^= 0, /a7</>a=//W=/v7<^v'.

(7) Given a surface S, suppose that with each point m of aS^ as centre a

sphere 2 is drawn with variable radius R. Prove that this sphere 2 in general

touches its envelope in two points M and M' such that MM' is normal to the

tangent plane at m to S.

1
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CHAPTER YI

SINGULAR POINTS OF PLANE CURVES*

§ 610. Exceptional cases in general. Singular points. In

the course of the preceding chapters we have encountered cases of ex-

ception in which, when some particular relation is exactly satisfied, the

general treatment usually applicable breaks down. These cases of ex-

ception correspond to exceptional points on the curve, usually such

that there are only a finite number in any finite region, at which the

curve has some peculiar property such as a stationary tangent, a point

of inflexion, exceptionally high order contact with its circle of curvature,

or its envelope, etc. All such points at which the curve posse'sses peculiar

properties may be considered to be singular points on the curve, but

it is usual to reserve this name for a particular class of exceptional

points—the most important class—which consists of the points at which

/.'-/; = o

when the curve is/(.r, y) = 0, and

when the curve is w^cf>j (t), y = ^2 (0- The former case is more general,

and we shall be mainly concerned with it. For the neighbourhood of

such points the general existence theorem 1*51 breaks down, and

further investigation is needed.

We shall again in this chapter, as in Chapters IV and V, tacitly

assume the existence and continuity, in the neighbourhood of the

singular point under discussion, of all the partial differential coefficients

off(w, y), or differential coefficients of </>i {t), <j>2 {t), that are mentioned.

§ 6 20. Form offQjc, 3/) = in the neighbourhood of a singular

point. Without loss of generality we may suppose that the singular

point is the origin, so that

/(o,o)=/;(o,o)=/;(o,o) = o.

It follows from Taylor's Theorem that in the neighbourhood of the

origin /(;2?, y) can be put in the form

(6-21) fix, y) = </>2 + ^3 + ... + </);, + Rn.

* This chapter follows d.l.V.P., Vol. 11, Chap. ix.
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In this equation

*-%M-©).-«--'(^).--'-(|)J
= a^x^ + Kaf-'^y + . . . + knif,

the latter form being used for the sake of shortness, and Rn is the

remainder after n terms. The most useful form of Rn for our purposes

is the exact form"^

(6-211) Rn =^ C F^''''^{tx)(l-tYdt,
rt', Jo

where
F{x) = F {x, u) =f{x, ux) {u = ylx),

or the corresponding form

(6-212) Rn =^ G(''+'^{ty){\-tfdt,

where
(^{y)=G {y, v) =f(:oy, y) {v = xjy).

Provided that, as is generally the case, <^2 does not vanish identically,

the singular point is said to hQofthe second order. When <^2j <^3 ••• 4>n-x

are identically zero, but <^„ is not, the singular point is said to be of

order n.

The fundamental form of the curve will not be altered by any trans-

formation of the axes of the type

X = ax + by\ y = cx -^ dy ;

and the properties of the transformed function/' (x, y') will be the same

as those of /(x, y) near (0, 0). We may therefore at any stage make,

without loss of generality, any such transformation that simplifies the

discussion.

Certain properties of the transformed functions F{x^u), G{y,v)
should be noted. The function F{x^ u) has as many orders of partial

differential coefficients as f{x^ y) near x = and any finite valtie of Uj

for all such points belong to the neighbourhood of ^ = 0, 3^ = 0. A similar

statement holds of G (y, v) near y = 0, and any finite value of v. Any
point near x = 0, y^O, corresponds to a finite value of one at least of

u or V.

If we suppose for example that u is finite, and apply 6-211, we see

that in such a neighbourhood

(^6-22) Rn=0(x''-^').

* d.l.V^P., loc. cit., and Vol. i, p. 432.

F.
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§ 6*30. Nature of the curves defined by f{cc, 3/) = 0. A discussion

of the following simple case will illustrate the nature of the curves

defined \i^ fix, y) = 0. Let

/fe y)^{y- «'^) {y - P^) = ^^

where a and /3 are real constants. Then the equation f(x, 3/) = defines

the two straight lines

y = aw, y^ Px.

These are two independent solutions oi/(x, y) - 0, which are continuous

in the neighbourhood of the singular point (0, 0). These solutions,

however, are not the only functions of the type y = <t>(x) which satisfy

f{x,y) = 0.

The function (or curve)

y = aw (x rational), y = px{x irrational)

also satisfies /(^r, y) = 0. This is a difficulty that does not occur in the

non-exceptional case (Theorem 1*51). It is essentially due to the fact

that in this case there are two independent solutions near (0, 0). We
see therefore that it is necessary to make the a priori restriction that

we are concerned only with continuous solutions of /(x,y)^0, i.e. such

curves as can be put in one of the forms

y = <l>
(x), x = <}> (y),

where <^ (x) or <f>(y) is a continuous function in the neighbourhood of

x^O, or y = 0, except perhaps at x=^0, ot y = itself. There may be

an infinity of other solutions of f(x, y) = 0, which are of no present

interest.

It is not necessary to assume a priori that, for example, <^ (x) is

continuous at ^ = 0, i.e. <f> (x) —> as x —> 0. Since we are considering

solutions oif(x, y) = in the neighbourhood of (0, 0) it is only necessary

a pri(yri that zero should lie between the limits of indetermination of

<^ (x) as ^— 0. It is, however, easily proved, by establishing contradic-

tions in the alternative case"**", that as x-->0, <f> (x) —» 0.

We therefore have to consider solutions of f(x, y) = 0, of the type

y = <f>(x) or x = <i>{y), for which <^—>0 as x—^0, oi y—>0, and
<f>

is

continuous near x = or ^ = 0. Such a solution we may call a con-

tinuous solution, or fi-om the geometrical point of view, a branch of

the curve.

* Hardy, P. 1/., p. 192.
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§ 6*310. The fundamental property of branches through a

singular point. The necessary discussion is simplified by establishing

in the first place a certain general property of any branch (i.e. continuous

solution) of /(x, 1/) = 0, without reference to questions of existence.

Questions of existence are treated later on.

Theorem 6 "31 1. Any branch must touch at (0, 0) one of the straight

lines defined by

<t>n = 0,

whe7^e n is the oi^der of the lowest order partial differential coefficient of

fix. y) ivhich does not vanish near (0, 0).

The straight lines defined by <^« = may all be put in one or other

of the forms

y = \x,

where A. is a root of

(6-312) ^^X'^+i^X^-^ + .-.+a^^O,

or x = A.'^,

where A.' is a root of

(6-313) a„V" + ^>„ V«-i + ...+Jcn = 0.

If y is any branch of f{x, y) = 0, it is required to show that either

(6-314) y <^\x,

where A. is a root of 6-312, or

(6-315) X ^ yy,

where X' is a root of 6*313. In the case of X = or X' = the corresponding

relation must be replaced hy y = o(x) or x = o (y).

The theorem may be proved by establishing contradictions in every

alternative case, for if neither 6-314 nor 6'315 is satisfied, then either

(i) y100-^1^ m^ xjy^ix,

where /a is some finite number, zero included, which is not a root of

either 6*312 or 6313,

or (ii) there exist a constant /a, not a root of 6*312 or 6-313, and an

infinite sequence of values of x^ which tend to 0, such that for these values

yjx = ^.

In either case it may be proved that* <^„ ^^ Ax'^ (A 4= 0) and at the

same time"**" Rn = 0{af^^'^\ and since <f>n + Bn = these relations are

contradictory.

* It may of course be necessary to replace a; by i/ in both these relations.

6—2
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§ 6'40. Singular points of the second order. Existence of

branches. We now proceed to consider questions of existence, starting

with the simplest case of a singular point of the second order. This

case is governed by the homogeneous quadratic form

Let

(6-41) ^ = hi-^a.2C^.

If A < 0, the straight lines represented by <^2 = 0, which provide all

the possible tangents to the curve at the origin, are imaginary ; if A > 0,

they are real and distinct; if A = 0, <^2 is a perfect square and <^2 =

represents only one straight line.

The nature of the singularity is described by the following theorem.

Theorem 6*42. Second order singularities.

{l)lf^<0,the singularity is an isolated point. There is no branch

{real) of the curve f{x, y) = through the singularity.

(2) 7/ A > 0, the singularity is a double point with distinct

tangents"^. The cu7've has two branches through the singularity, one

touching each of the distinct lines defined by 4^2 = 0.

(3) If A^O, the f(yrm of the curve is still uncertain but, in generaly

unless a particular condition is satisfied, the singularity is a cusp of

the first species. The curvehas two branches which tend tothe singularity

from one side only, and have as their common tangent there the line de-

fined by <l>2
= 0. The branches lie on opposite sides of the tangent.

(1) A<0. This case is covered by Theorem 6*311; for since there

is no real line which the branch can touch there can be no branch through

the singularity.

(2) A>0. In this case there are two distinct real roots, and we

may suppose (§ 6*20) that

</)2-^3/;

the necessary axes may be oblique. Any branch must either touch the

line i/ = 0, satisfying y^o (x), or touch x= 0, satisfying x^o {y). Consider

the former case and put y = ux, so that u-^0. The equation /(^, 3/) =

transforms into

a^u + a^t\{x,u) = Q

or

(6*43) H{x, u) = u + xFi (x, u) = 0,

* Frequently called a node.
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where the function i^i possesses continuous partial differential coefficients

near (0, 0). Moreover

^(«'«) = «' (S)o = >'

and therefore the Existence Theorem 1*51 may be applied. There

exists therefore a unique branch

such that <^i (.r) —> as a^—>0. The equation /(^, i/) = has exactly

one branch

touching the line ?/ = at the origin. Similarly there is exactly one

branch

touching the line x = sX the origin. There cannot be other branches.

(3) A = 0. In this case </>2 is a perfect square and we may suppose

(§ 6-20) that

<i>2=y\

fix, ij)=y'' + {a^x^ + h^a^y + c^xy'^ + d^\f) + U^.

Any branch must touch y-0 at the origin. We therefore write

y = ux, where m—> 0, divide by a^, and obtain

(6*44) H (x, u) =u^ + x{as + b3U + c^ m^'+ d^u^) + a^F^ (a?, u) = 0,

where Fi{x, u) possesses partial differential coefficients near (0, 0).

If a3=t=0, the Existence Theorem 1'51 applies, and establishes the

existence of a unique function xj/ such that, near (0, 0),

X = u'xp{u) (,/.(0) = a4=0).

Making the substitution xja = f, it is easily seen that the origin is

an ordinary double point with distinct tangents for the (t, u) curve.

There exist, therefore, two branches of the («*, x) curve of the form

U = {xlafg{{xla)\ u = -{xlafg{-~{xlaf}',

and so two branches of the (y, x) curve

(6-45) y^±x (x/a)^ g {± {xjaf},

where ^ (0) = 1. It will be observed that y is real for real x when and

only when xja > 0, i.e. on one side only of the origin. Further, y has

opposite signs on the two branches near (0, 0), and therefore the two

branches lie on opposite sides of the common tangent. Such a point is

called a cusp of the first species.
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§6-460. Discussion of the doubtful case. When ^3 = 0, i.e.

^fjda^ =. for the particular axes chosen, the above discussion does not

apply, and the nature of the singularity remains doubtful. If we return

to equation 6 '44 giving 11 (cp, u), regard it as an equation between x
and u and rearrange the terms in a new Taylor's series we obtain

(6*461 ) {u^ + hzux + a^x"') + (a^a^ + b^a^u + c^xu^) + R^ (x, u) = 0.

"We are concerned with branches through (0, 0) and 6*461 shows

that (0, 0) is a singular point of the second order on the (u, x) curve.

We therefore apply de novo the preceding discussion.

Case (1). If the quadratic form nj^ -\- h-^ux -^ a^x"^ has no real roots,

the origin is an isolated point on the {u, x) curve and therefore also on

the (y, x) curve.

Case (2). If this quadratic form has two distinct real roots a and ^,

there are two distinct branches of the {u, x) curve passing through (0, 0)

and such that

u r^ ax, u <^ /3x

respectively. There are therefore two distinct branches of the (i/, x)

curve through (0, 0) such that

y (^ a^, y (^ Px^.

It is easy to see that if one root (a say) is zero, the corresponding

branch of the {y, x) curve takes the form

y <^ a!x^ {r % 3).

It will be observed that both of these branches are real on both sides

of the origin, which may be called in this case a double point with
coincident tangents. The two branches are distinguished by their

necessarily different curvature at the origin.

Case (3). If the quadratic form is a perfect square {ii - cnxf, we
again return to the doubtful case. If, however, as is in general the case>

ag 4=0 in 6*461, the (u, x) curve, after the last section, has two branches

near (0, 0) touching u-ax = Q and such that

u-axc^ ±x{px)^ (/S#= 0).

It follows that the (?/, x) curve has two branches near (0, 0) such that

y-ax''^±a^{Pxf.

These two branches exist only on one side of (0, 0), have (of course)

the common tangent y = 0, but now lie on the same side of the tangent.

Such a point is called a cusp of the second species. Such a cusp is
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an essentially more complicated singularity than a cusp of the first

species.

In the exceptional case, however, ag = 0, and the nature of the curve

is still doubtful, for the origin is still a double point of the curve obtained

by transformation from the (u, x) curve. It is necessary to start the

discussion yet again at the beginning, and to continue until a decision

is reached. If the curve is algebraic /(^, y) is a polynomial, and the

process must eventually terminate, for each step consumes more terms.

If, however,/ {x, y) is not a polynomial, the process may never terminate,

and the nature of the singularity remains undecided. In all cases in which

the process terminates (whatever the stage) the resulting singularity

may be classified as one or other of an isolated point, a double point

(with distinct or coincident tangents), or a cusp of the first or second

species.

§ 6 -60. Singular points of order n. The discussion of such points

is very similar to the case n = 2, and may be rapidly sketched. We have

already proved that any branch touches one of the lines defined by

4>n = 0. We have therefore only to consider the existence and form of

the branch or branches associated with any given factor of <^„. Let the

given factor be ^, of multiplicity k'^n. Then/(;z?, y) = takes the form

f^n-k (^, y) + <^n+l (^, y) + Rn+l = 0.

Put y = ux, so that m —> for the branches in question, and

Vl'^lfn-k (1, «^) + X4>n^l (!,««) + R'n+l = 0,

where «A«-i(l, 0)4=0, E'n^^=0(x').

Case (1). k^l. The origin is an ordinary point of the (u, x) curve

and Theorem 1*51 applies. There exists exactly one branch touching each

line defined by a simple factm^ of <l>n.

Case (2). k>l, but <^^+i (1 , 0) 4= 0. Theorem 1*51 applies and shows

that there exists a unique function of u such that

x = v!'<i>{u) (<^(0) + 0).

If k is odd arguments similar to those used in Theorem 6 '42, Case (3),

show that the relation between x and u can be put in the form

u = x''''g(x'"') (^(0)4=0),

so that u is real for real x near (0, 0) and changes sign with x. Hence

and ?/does not change sign wither. There is thus one branch corresponding

to this factor of <^„ which touches it at the origin without an inflexion.
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Ifk is even, we obtain in the same way

u = ± (aa^y'' g {+ (0^)^/^=} (a = l/<^ (0)).

Here uh real only when x has the sign of a, and y has opposite signs

on the two branches. There are therefore two branches to the {y, x)

curve corresponding to this factor of </>„, which touch it and form a

cusp of the first species at the origin.

Case (3). k>l and <fin+i (1, 0) = 0. In this case the (u, x) curve has

a singularity of order not greater than k at the origin (k "^ n). We make

a fresh start to analyse the {u, x) singularity, and proceed as before. If

the curve is algebraic, the process will terminate at some stage, since

k%n and each step consumes more terms.

EXAMPLES VI

(1

)

The various species of singular points of the second order are illustrated

by the following algebraic curves at the origin of coordinates.

Isolated point : x^+y'^+ofi=0.

Double point with distinct tangents : x^-{-y^ — Zaxy=0.

Cusp of first species: y2_^=0.

Double point with coincident tangents : y^{\+x)- x^=0.

Cusp of the second species : (y — x^Y — -^ = 0.

(2) Singularities of x—(fii{t), y= (f)2{t). A singular point is one at which

0i' {t)=
(f)2

{t)= 0. It may be assumed that the point corresponds to ^=0, and

that ^1 (0)= ^2 (C))= 0. By suitable change of axes we can arrange that

x= atr>/,{t) (p^2,/i(0) = l),

y= bt^^-Mt) (a>0,/2(0)=l).

Any existent branch touches y=0.

Case (1). p odd. The relation between x and t can be replaced by a imique

relation

so that t changes sign with x. We have also

If a is odd, y does not change sign with x. If a is even, y changes sign with

X. In either case, there is one branch of the curve through (0, 0) touching

y=0, with in the latter case y= for an inflexional tangent. There is apparently

no singularity, but really one of a concealed nature, for d^y/dx^ —> qo as ^—> 0,

if a < p, and whatever value a has, some differential coefficient is discontinuous

at (0, 0).
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Case (2). p even. We have

Thus t and y only exist for values of x on one side of (0, 0), such that xja > 0.

There are two branches touching y= at (0, d) and forming a cusp of the first

species if a is odd and a cusp of the second sj^ecies if a is even, provided it is

not the case that k (\) is an even function of X. In this latter case, there is

only one branch when a is even.

(3) Radius of citrvature at a cusp.

Let i* be a cusp, Q a point which tends to P along either branch of the

curve, and p the radius of curvature at Q. Then as ^— P, p —> 0, if P is the

simplest type of cusp of first species.

On the other hand p usually has a finite limit (different from zero) if P is

the simplest type of cusp of the second species though exceptionally p —^ oo

.

Consider the more complicated cases.

(4) Discuss the form of the evolute of a curve near the point corresponding

to a stationary value of p {dpjds= 0) on the original curve. Show that in general

the evolute has a cusp of the first species,

(5) Show that in general a cusp of the second species on a given curve

corresponds to a point of inflexion on the evolute.

CHAPTER YII

ASYMPTOTES OF PLANE CURVES*

§ 7 '10. Definition of *'P->qo." If P(x, y) is a point on the

curve f{x, y) = 0, and if P moves alcmg the curve so that one at least of

X and y tends to -^ cc or to — ^ , then P is said to tend to infinity, and

we write p _^ oo

.

Definition of an asymptote. IfP he a point on the curve y ^f{oc)

and P—> <:c
J
and if the shortest distance of P from the curvef (or a

brajichofit) g(x,y) =

tends to as P —> cc, then the curve (or the branch of the curve)

^ (^, y) = is said to he an asymptote of the curve y =f(x).

* d.l.V.P., Vol. II, pp. 391-393.

t This shortest distance will exist provided the curve (or branch) is continuous.
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If the curve g {x, ?/) = is a straight line

ax-^hy + c-0,

then this straight line is said to be a rectilinear asymptote of y^f{x);
this name may be shortened to asymptote when there is no possibility

of confusion.

§ 7 -20. Properties of asymptotes. The following theorems explain

the definition and are of general utility in obtaining asymptotes to a

given curve.

Theorem 7 •21. In m^der that g ix, y) = may be an asymptote to the

curvey =f(x) it is sufficient that, asF—^cc along y =/{x), the distance of
Ptog (x, y) = 0, measw^edparallel to afixed direction, should tend to zero.

For such a distance is certainly not less than the shortest distance,

which therefore tends to zero.

In the particular case of a rectilinear asymptote, which is tlie im-

portant case, this condition is also necessary*, if the proviso be in-

serted that the fixed direction is not parallel to the given straight line

g(x,y)^0; for then this oblique distance bears a constant finite ratio

to the shortest distance.

Theorem 7*22. In m^der that the straight line x = a may he an

asymptote to the curve y =f{x) {with coordinates rectangular or oblique^,

it is necessary and sufficient that

either as x-^a + 0, or as x—>a- Of,

The two cases do not need separate treatment. Suppose x—>a-0.
If P be the point (x, y) on the curve, then P—>oo asir-^a-0.
Moreover, the shortest distance from P to x-a^O is (a-^)sina),

where o> is the angle between the coordinate axes, and therefore tends

to as P—> GO . Thus the condition is sufficient, and it is plainly also

necessary.

A similar theorem could be given for asymptotes of the type y = hy

but this case is covered by the next theorem.

Theorem 7 '23. In order that the curve y = g{x) .should be an
asymptote of the curve y =f{x), it is sufficient {but not necessary) that

f(^)-g{^)-^o
as x—^ cc.

* The condition is not necessary for general asymptotes. See Theorem 7 '23.

t Or both, of course, x—^a + means that x>a, and x—^a, while r —> a -

means that a; < a, and x—> a.
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This is merely a simplification of Theorem 7*21, so far as the

sufficiency of the condition is concerned. To show that the condition

is not necessary, we have only to prove that, e.g.y \i a>l, y = af- \^

asymptotic io y = af-+\. We have, in the first quadrant, for the former

curve i^' = + y^*, and for the latter x = {y + iy-''^. Hence the difference

between the curves measured parallel to the ^-axis, for a given value

Ofy, is ^y^^y!a_yVa^

which tends to as ?/ —> oo , if 1/a < 1.

In the case of rectilinear asymptotes, however, when g (x) b.cx-\- d,

this condition is necessary as well as sufficient, as we have already

stated.

Before passing on, it is well to state explicitly the following almost

obvious facts, which are constantly used in the following sections.

If the straight line y = cx + d is an asymptote to the curve y =/(^)
^^'^ /W-c^, f{x)-cx-^d
and conversely.

§ 7 "240. Asymptotes as the limits of tangents or chords. An
asymptote is sometimes defined as the limit of a tangent whose point

of contact tends to infinity. Asymptotes however may exist in the sense

of the definition of § 7*10 when the tangent has no limit*, as its point

of contact tends to infinity. This fact shows that "the limit of the

tangent" is not a suitable definition of an asymptote. The precise

relations between asymptotes and tangents are defined by the following

theorems.

Theorem 7*241. If a tangent to the curve

y=f{x\

whme point of contact is P, has the limit

y = cx + d

as P—> CO, then y = cx + d is an asymptote.

The tangent at the point P ($, rj) is

y-f'{i)x-{r,-u-{i)\ = o.

Suppose for example that, as ^ —> + oo , this tangent tends to the limiting

position y_cx-d = 0;

i.e. suppose that

* The curve need not even have a tangent.
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If C4=0,/' (I) <- f, and therefore ^/(^) - cl Therefore

On integrating we have

^+logf-log/(f)+| = o(i),

But, as/(^) '^ c^, we must have B = c. Therefore

and so finally

f(i) = ci + d + o(l);

or in other words

y = C£c + d

is an asymptote. The case c = alone remains to be considered.

In this case we have to prove that if

/'(i)->0, f{i)-i/'(i)^d,

then /(i) —>d. Let us write

then

Therefore, by what we have already proved,

g(i) = $-^d + o(l\
so that

/(i) = d + o{l),

as was to be proved. It follows that i/-d in an asymptote and the proof

of our theorem is completed.

If the tangent has a limiting position, it follows from the proof of

the last theorem that

(7'2411) /'(f) = c + o(|).

This condition is however not in itself sufficient to imply the existence

* By I'Hospitars theorem, d.l.V.P., Vol. i, p. 124.
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of a limit. For example, if/(^) =^cx + log log x,f (^) satisfies 7*2411,

but no asymptote y = cx + d exists.

The geometrical meaning of this necessary condition 7 "2411 may be

mentioned in passing. It is that, unless the slope of the tangent tends

sufficiently rapidly to its limit, the point of intersection of the tangent

and the ?/-axis for example will not remain within a finite distance of

the origin and "the limit of the tangent will lie wholly at infinity ".

Theorem 7*242. Under the same conditions as in the last them^em,

the asymptote is the limiting position of a ch/yrd two oj whose points of

intersection with the curve^ say P, §, together tend to infinity in a

direction in which the curve is asymptotic to its asymptote.

Let P be (^i, r/i) and Q be (I2, ^2), and suppose that

Then the chord is

V 2
"~ V

1

where 4>l>^i, by the mean value theorem, supposing that ^2>^i.

Since/' (^) —»c, we have only to prove that

But this follows at once from the facts that (by 7*2411)

and ^1 < ^, and so the theorem is proved.

The restrictive hypothesis needed in the two last theorems is of some

interest. Its necessity may be illustrated by the curve

y =f(x) = ex + x~'^ sin {of).

If a > 0, ?/ ^f[x) has the asymptote ^ = c^ as ^ -^ oo , but/' {x) has no

limit as ^ —» 00 unless a > 1. If a > 1,

/' {x)-G = 2x^-'' COS (x^) - our-i-* sin (x') -^ 0,

but
'

• ^(/'(^)-c)-^0

if and only if a > 2. In this case only (a > 2) the tangent tends to the

asymptote. This example illustrates what we stated above, namely that

the " limit of a tangent whose point of contact P is such that P—^cc"
or "the limit of a chord etc." are unsuitable as definitions of a rectilinear

asymptote except perhaps for algebraic curves, where the restrictions

are always satisfied.
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§ 7*250. The preceding definition and theorems have been stated as

referring to a curve y=f{ic). They all apply without change to any

branch of the curve f{x, y) = which satisfies the conditions of the

implicit function theorem, and so can be expressed in the form

y = ylf{x) {x>x,), m^ x = xl;{y) (3/ > 3/0).

As some such conditions are essential to enable us to assert the existence

of the branch in question, they form no restriction on the generality of

the foregoing discussion.

For a curve given in polar coordinates by the equation r =f{0), the

fundamental theorem is the following.

Theorem 7 '251 . If 9^—> co as 0—> a and if

then the straight line

r sin {o.-&)~h

is an asymptote to the curve; and conversely.

The proof is left to the reader.

§ 7 -30. Asymptotes of algebraic curves. In the case of an algebraic

curve, the behaviour of any branch as x —> cjo or (and) y —^ cc can always be

reduced, by a suitable substitution, to the study of the branches of an algebraic

curve in the neighbourhood of the origin. For example, suppose both ^ —> co

and y—^co. The equation of the algebraic curve can be written in the form

(7-301) 0«(-^,.y) + <^n-i(^,y) + .- + <^o= O,

where ^^ {pc^ y) is a polynomial in x and y, homogeneous and of degree r.

Write x=ljx', y= l/y'. Then 7'301 in general transforms into

^^7^</>H(y,-^)+^p-i^«-i(y,^^')+.-+<^o=o,

or (/)„ (y', x') + x'y' </>« - 1 (y', -^O + • • • + (*^''y')"
<^o= <>•

We have therefore to study the form of the branches of this curve in the

neighbourhood of the origin, which is a multiple point of order n. This is the

problem whose solution was sketched in § 6 "60. It is convenient however to

develop an alternative direct method of attack, though it should always be

borne in mind that the study of the asymptotes of algebraic curves is identical

theoretically with the study of the form of the branches through a singular

point.

When we discuss the existence of branches belonging to any possible

asymptote, we shall in general reduce the problem by a substitution to the

problem of the existence of a branch touching a definite straight line through

the origin ; for to any chosen asymptote a definite tangent at the origin is

made to correspond by the substitution. This provides a convenient way of

specifying precisely what is meant by a single branch or branches of the
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algebraic curve near infinity. The branch associated with a particular asymptote

means the branch corresponding to that which touches a particular tangent at

the origin of the transformed curve.

Suppose that fix^y) = is the equation of an algebraic curve of degree n,

which may be put into the form 7'301. We shall attempt to find the rectilinear

asymptotes of the various branches of this curve which are not parallel to the

axis of y, i.e. asymptotes of the form

y= cx-\- d.

It is clear that an exactly similar procedure, on interchanging x and y, will

find for us the asymptotes of the form

x=cy+ d,

i.e. those not parallel to the aifis of x. The apparent exception does therefore

not limit the generality of the discussion.

As P— 00 along a branch of the curve /(.r, 3/) =0 in a direction (.r—»+ oo

say) asymptotic to the asymptote y--=cx-\-d^ we have

yrsjcx, y-cx—^d.

Writing y— tXy x=\lx' in equation 7"301 and dividing through by .z?", we have

(7-302) <^,(l,0 + .^>«-i(l,0 + ... = O,

an equation giving t in terms of x'.

Now by hypothesis i —> c as .r— oo , i.e. as xf —> 0, so that t remains finite

as x' —> 0. Moreover, it satisfies an equation of the form

«o«^+ ai<'^-H... + K+o(l))=0, (X^w).

Now the roots of such an equation are continuous functions of a;^ the constant

term. Therefore, as .r' —> 0, ^ —> a, where a is the root of the equation

i.e. of

(7-303) </)«(!, a) = 0.

We have therefore found that the first condition to be satisfied hy the asymptote

y— cx+ d is

(7-31) (^„(l,c)=0.

Unless this equation has real roots there will be no asymptotes of the

assumed form. Let us suppose therefore that c is a real root of this equation.

Writing y=cx+v=v+ c/x', and substituting for y in the equation of the curve,

we have

cjini^, c^+ ^) + 0„-i {x, cx+v) + ... = 0.

It is required that v—>d, as x—> oo . On dividing through this equation by
x^^, we have

(l)n{l,C+ x'v)+x'<j).n_l{l,C-^x'v) + ...=0,

and, by applying Taylor's theorem,

^'y(^^'(l,c)+l^''%20^"(l^c)-|-...+y0„_i(l,c) + ^'2 2;0'„_i(l,c)4-...-O.
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The number of terms in each expansion is finite, so that there is no question

of validity. Suppose now that

</)^'(l,c)4=0,

i.e. that c is a simple root of the equation <^n (1> t)=0. Then v satisfies the

equation

where >//" is a polynomial in v and x' of degree n at most. Since v —^ d^ v re-

mains finite as x' —> 0, and therefore

.lr{v,x')=0{\).

Therefore, by a repetition of our preceding arguments, d must be a root of the

equation
o?0/(l,c) + (/)«-i(l,c) = O,

i.e.

(7-32) o?=-0„_i(l,c)/0«'(l,c)

provided ^^ ( 1 , c) =|= 0. We have therefore found that if y= cx+ d is an aspnp-

tote then
^„(l,c)= 0,

and if c is a simple real root of </>„ (1, c)= then

o?=-0„_i(l, c)/(^n'(l,c).

We must now consider the case

</,^'(l,c)=0,

in which c is a multiple root of <^,i (1, ^)= 0. Suppose first of all that

</)n-i(l,c) + 0.

Then the equation satisfied by v may be written (^^-i {l,c)-irx'y\r{Vy ^') = 0, and

as V is to remain finite as x' —> 0, we have

(/>n-i(l,c) + ^(-^') = 0,

which contradicts <|)n-i(lj <^)+ 0. There is therefore in this case no rectilinear

asymptote.

Let us now suppose that
0„-i(l,c)=O.

Then the equation satisfied by v may be written

It follows that, provided either 0/ (1, c)+ or </>'„_! (1, c)=t=0, d must satisfy

the quadratic (possibly linear) equation

(7-33) ^d^<i>n"il,c) + d<j>'n-i{l,c) + <lin-2{hc)=0;

that if <^„"(l,c)= 0, 0'„_i(l,c) = O, and 0„_2 (1, c)=NO, there is no rectilinear

asymptote of this type; while if <^«" (1, c)= 0'^i (1, c) = <^„_2(l,c)=0, the
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matter is still uncertain. We then continue the above process and, since the

degree of the equation is finite, the process must eventuall}^ terminate, leaving

us either no asymptotes of the assumed type, or else equations by which to

determine c and d. We can sum up the results of the preceding discussion as

follows.

In order that

y=cx-\-d

may he an asymptote of the curve

0» (-^^ y) + 0n-l (^, 3^) + . . . = 0,

it is necessary that c should he a real root of

0n (1,0 = 0;

and that, if c is a simple root of this equation,

o?=-0„_i(l,c)/(^„'(l,c).

If c is a multiple root, there is no asymptote unless

0„_i(l,c)=O.

If also <f>n-i (Ij c)=0, then d must satisfy the equation

hd"ct>,"{hc)+dct>'n.^{l,c)-{-cf>,_2{l,c)=

provided this equation contains d ; and so on.

A less explicit but more compact statement of these facts may be made as

follows. We first of all notice that, on substituting y= v+ c/a/ into the equation

of the curve, and reducing, we eventually obtain in all cases an equation of

the form

(7-331) >//-(v,c)+^Xi;,c)4-...=0,

where i//" (y, c) is polynomial in v and c which is not identically null, but which

may or may not contain v. It follows that d must be determined by the

equation

(7-332) ^{d,c)=0,

and that if this does not contain d then there is no rectilinear asymptote for

this particular value of c. Then we may say that in order that

y= cx+ d

may be an asymptote of the curve

it is necessary that c shoidd he a real root of

</>» (1,0=0,

and that, when a value of c has thus been determined, d should he a real root of

ylr{v,c)= 0.

If there is no such real root there are no rectili7iear asymptotes for this value

of c.

F. 7
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There is jet one more necessary condition that follows from the assertion

that ^=ca;+dm an asymptote, namely that there should exist a real branch
of the curve / {x, y) =0 of the form

where w —> as ^ --> co (or as ^ —> - qo as the case may be). On substituting

d+u for V in equation 7 "SSI we have

(7-333) yj/ (d+u, c)-{-x'yfri{d+u, c) + ...=0,

or for the sake of shortness

x{d+u,c,x')=0,

and the necessary condition that we require is that equation 7*333 admits at

least one real root u {x') such that u {x') —> as ;r' —>+ [or as j??' — - as the

case may be]. The problem is thus reduced to the ordinary problem of the

existence of implicit functions, and admits the solutions of Theorem 1*51 or

Chapter VI.

It may be noticed that the sign of u {x') determines whether the curve lies

above or below its asymptote for large values of Xj and that if u {x') exists and

u {x') —^0 as :«/--> + 0, or as y —> - 0, the curve approaches its asymptote as

A'—>+ 00 or as ^—> - 00 respectively.

It is easily seen that, with the addition of the last condition, the foregoing

necessary conditions for the existence of rectilinear asymptotes are also

sufficient. We may therefore enunciate the following theorem, which embodies

one of the usual rules for obtaining rectilinear asymptotes.

Theorem 734. Rule I for Asymptotes. In order that

y= cx-\-d

may he an asymptote of the curve

<t>n {^\ y)+ ^n-i (^, y) + . . .
= 0,

it is necessary and sufficient (1) that c should he a real root of

</)n (1,0= 0;

(2) that when c has so heen chosen, d should he a real root of

^{v,c)= 0;

and (3) that when d has so heen chosen

x{d+u,c,a/)=0

should admit at least one real root u (x') such that u (x') —^Oasx'—^+ Oor {and)

as x' —> — 0.

Here -^{v, c) and ^ (o^+^j c, of) are certain polynomials which have been

defined in the course of the foregoing discussion. The existence of the branch

u {x') may be discussed when necessary by the methods of Chapter VI,

§ 7 -40. Asymptotes parallel to the axes of coordinates. It is of interest

to consider in greater detail the case in which zero is a possible value of c, i.e.

in which 0„(1,O)= O.
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We note that 0„ (1, 0) is the coefficient of ^'*. In this case

d= - 0,_i (1, O)/0n' (1, 0) (<^/ (1, 0)+ 0).

Now 0„'(1, 0) is the coefficient of t in ^^(l, t), and ^«_i (1, 0) is the terra

independent of ^ in ^n_i (I, t). Hence

y0,'(l,O)+ (/,»_i(l,O)

is the coefficient of x^~\ i.e. of the highest pdwer of x in/(j7, y). Moreover

y(^„'(l,0) + <^,_i(l,0) =

is a possible asymptote, and efifectively one if condition (3), that a suitable real

solution of

exists, is satisfied. Again if ^„'(1, 0)=0, and ^n-i(l)0)=0, d is determined

by the equation (unless meaningless)

id^cl^n" (1, 0)+dct>'n-l (1, 0) + </)„_2 (1, 0) =0,

and the asymptotes if they exist are given by

i/K'(l,O)+y0'n-i(l,O) + <^„_2(l,O) = O,

where the expression on the left is the coefficient of a?""^, i.e. of the highest

power of X inf{x, y). It is easy to see that this holds in general, and therefore

that all possible asymptotes of the form y=d may be obtained by equating to

zero the coefficient of the highest power of x occurring in the equation /(jp, y)=0.

It should be observed that this rule can only be effective when the term x^

does not occur. We may therefore state the following theorem embodying

this rule.

Theorem 7 -41. Rule II for Asymptotes. Rectilinear asymptotes parallel

to the axis of y (x) can only exist if the term in y^ {x^) does not occur i7if{x,y).

When they exist, they can be obtained by equating to zero the coefficient of the

highest power of y {x) occurring m f{x, y). Condition (3) must be shown to be

satisfied for each line so obtained, before we may assert that such a line is actually

an asymptote.

§ 7-50. Existence of branches of the curve, asymptotic to the asymp-
tote. It is important to call attention to certain general cases in which con-

dition (3) is automatically satisfied, and in which, therefore, when we have

obtained c and d we can at once assert that y=cx-\-d\s, o^xi asymptote*. This

we do in the following theorem.

Theorem 7*51. If d is a simple root of ylr{v, c) = 0, or in partictdar if c is

a simple root of (f) (1, t)= 0, then

y— cx+ d

is an asymptote, and moreover asymptotic to a single branch of the curve both as

^—>
-f 00 and as x—^ — cc . The branch in general lies on opposite sides of the

asymptote at the two ends.

* Cf. § 6-60.
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If c is a simple root of cf) (1, = 0» ^^^^ have already seen that the equation

determining d is linear, and therefore that o? is a simple root of yjr (r, c) = 0.

When this is so, the equation determining u, namely,

ylr{d+u, c)+x'\lri {d-\-u, c) + ...=0,

may be written

X {u, x') = u-^'{d, c)+^zt^ylr" {dj c) + ...-\-x'\lri{d+ic,c)-{- ...=0,

where >//' {d, c) =|=0, and the values (0, 0) satisfy the equation. The origin of the

curve X (^j •^^') = is therefore an ordinary point, since (^) =^^- I* follows by

the Existence Theorem 1'51 that a unique function w(^') exists for values of

:v' such that
|
^

]

<k, and that u {x') —» as
|

^'
|

^ 0. Further w {jf) in general

changes sign with y. Condition (3) is satisfied, and our theorem is proved.

This corresponds to the case ^=1 of § 6 "60.

We may apply the preceding reasoning to Rule II, and obtain the following

theorem analogous to 7 '51.

Theorem 7*511. If the highest power of x is ^'""^, and if its coefficient is

ay-\-h{a^ 0), then ay-\-h= is an asymptote^ asymptotic in both the directions

y—^-{-cc^y —^ -^ to a single branch of the curve.

We may observe here that the need for condition (3) is simply in order to

exclude the possibility of u {x') being complex for real values of x' however

small. Since (0, 0) is always a point on the algebraic curve

X{d+u,c,x) = {\

there always exist one or more functions u {x'), such that u {x') —> as
|
;i;'

|

—> 0,

if complex values are admitted. In this case too, complex values of c and d

may also be admitted, and to such a pair will correspond a branch of the curve

(necessarily complex). The need for condition (3) arises from the fact that

while to complex asymptotes correspond complex branches of the curve, to

real asymptotes do not necessarily correspond real branches. The corresponding

phenomenon in the case of singular points is the occurrence of an isolatedpoint.

If we strike out all conditions of reality for real values oi x, Theorem 7 '34

takes the simpler form.

In order that y=cx+ d may he an asymptote of the curve

<^« (•^, y) + <^«-i (•37, ^) + ... =0

it is necessary and sufficient (1) that c should be a root of

<^n (1,0=

and (2) that when c has been so chosen d should be a root of

ylr{v,c)=0.

In general <^„(1, = has n distinct roots. We may therefore, with due

caution, say that vi general a curve of degree n has n rectilinear asymptotes real

or complex.

§ 7 -60. After what precedes, the reader should have no difficulty in giving

a strict proof of the validity of the following rule for the rectilinear asymptotes

of an algebraic curve.



ASYMPTOTES OF PLANfe GTOVKJ^ ,101

Theorem 7 '61. Rule III for Asymptotes. If the equation of an algebraic

curve can he expressed in the form

fn{x,y)+fn-2{x,y)=^,
n

where /„ {x, 3/)= n (a^^+ 6^y+ c^),

r=l

andf1^2 i^-t y) ^^ ^f degree n-2 at most hi x and y, and if no factor off^ {x, y)

is a constant, and no two factors of f^ (x, y) represent identical or parallel

straight lines, then the curve has 71 asymptotes whose equations are

arX-^bry+ Cr=0 {r= l,2,...n).

It should be noted that in this case all the lines are necessarily asymptotes

to real branches of the curve (Theorem 7*51).

§ 7*70. Curvilinear assnnptotes. We have seen that under certain con-

ditions, although c is a real root of 0«(1, t)=0, yet there cannot exist any

corresponding rectilinear asymptote. [In fact in such cases there cannot exist

any such asymptote even if complex values are taken into consideration.] An
investigation similar to the preceding shows us that in certain cases there

exists a real branch oif{x, y)= 0, which satisfies the relation ^ r^ c^, as /*—> 00
,

but which does not satisfy the relation y — cx—^d for any finite value of d.

In order to obtain a knowledge of the form of any branch of the curve

f{x,y)= as P—> 00, it is necessary to undertake a further investigation of

such cases. We shall find that instead of having a straight line as asymptote,

the curve has, in the simplest case, a parabola as asymptote. We proceed to

discuss this simplest case before passing on to the general one.

Parabolic asymptotes. The simplest case left over from the last section is

that in which
</)„(l,c) = <^„'(l,c)=0, 0«_i(l,c)=#O;

and the simplest form of this case is obtained by supposing

We write y=^+ c^='y+c/^'', and note that we must have

(7-72) v=-o{x).

The curve then takes the form

or |^M0n"(l,c) + o(l)}+^{0._iO,c) + o(l)}= O.

In order that this equation may have a real solution it is necessary that

x4>n-i (1, c)/</)/ (1, c) < 0,

i.e. that j; —> - 00 if ^n-i (I5 c)/^,/' (1, c) > 0, and ^—> + x if

(^„_i(l,c)/0/(l,c)<O.

ll will be sufficient to consider one of these cases, for instance the latter. We put

(7-73) a={-2(^«_i(l,c)/</),"(l,c)}*.

7—3
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Then, as ^—> + oc , it is necessary that either v r>j 0^2, or vo^ — aa;^^ both of

which hypotheses fulfil the condition 7*72. We must therefore have

i/=c,v±axh(l-\-o{l)),

as ^—>+ C30 , while as ^' —» — qo there can be no real values of y satisfying 7'72.

We have still to go a step further before we find an asymptote to the branch

Putting v= ±cu«^-\-u, where 11=0(0:2)^ we find that u must satisfy

±a^i?^{(^/(l,c)4-o(l)}±a^^[<^Vi(l,6') + ^a2(/>„'''(l,c) + o(l)] + 0(l)= 0,

or ^'^-<^'»-i (1, c)l(f)n" (1, c)-a^<t)n"' (1, c)/6(/)«" (1, c).

Therefore we must have

y= cx±axh + ^-\-o{l\

as x—>cc, where a={- 2<^„ _ j (1, c)/<^/ (1, c)}i

,

and ^= - 0'„ _ i/<^,/'+ 0n - 1 <t>n"l^(t>n"\

whei^e (f)'n-i etc. stand for ^'„_i (1, c), so that the two branches of the curve {if

they exist) must he asymptotic to the two arms of the parabola

{l)-CX-^f^d^X.

It only remains to show that if we write

ij= ex ±ax\-^^-\- w,

there exists in both cases a real function w for large positive values of x^ such

that w—>0 as ;r—>4-oc ; this follows at once from the fundamental theorem

rSl in the manner of 7*50, for /3 is the root of a linear equation. The reader

will have no difficulty in supplying the details. We have therefore proved the

following theorem.

Theorem 7 "74. Parabolic asymptotes. If c is a root of (/>„ (1, c) = such

that

(^„(i,c)=<^,;(i,c)=o, <^„_,(i,c)+o, 0;'(i,c')+o,

th^i there exist two branches of the curve

which possess the two arms of the parabola

for parabolic asymptotes.

The best possible parabola. Before leaving this simplest case it should be

noticed that the arms of any parabola of the form

{if - ex—^f= a^x+ ii^

where /x is any constant, are asymptotic to the two branches of the given curve.

We can in fact determine /x in such a way as to give the closest possible

approximation to the two branches, and as the parabola is in no way rendered

more complicated by a value of /x other than zero, it is worth while to determine

this best possible parabola. We shall find that, while in general the shortest

distance between the parabola and the curve is 0{x~ i), for one and only one

value of /i it is (1/^).
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Proceeding as in the last section we find that W(^±yx~^^ and that if

to= ±yx~h+ z then z=0{\lx).

It follows that

y-cx - ^= ±axh±yx-^'\-0 {Ijx).

Moreover, \i {j/-cx — ^y^= a"^^+ /n,

y-cx-^=±cuic^±^ (fi/a) x'^ + O (l/x).

If therefore

fi= 2ay,

the ordinates of the curve and the parabola diffier by (Ijx), while for all other

values of fx the ordinates differ by 0{x~ h). It follows that the best possible repre-

sentation of these branches of the curve by a parabola is afforded by the parabola

{y-cx-^f= a^x-\-ix,

IVhere fx= 2ay.

The general case. The following theorem covers all cases.

Theorem 7-75. General curvilinear asymptotes. Ifc is a root of

0« (1,0=0

to which no rectilinear asymptote can correspond^ but to which correspond one or

more real branches of the curve

</)» (^s .y) + <^n- 1 (-^s y)+ • . • =
satisfying

y r^ cx\

as X —^ + cc or x —> — co as the case may 6e, then any one of these branches takes

the form

y=cx-\-dt^> {l+ 2 ait-\->^0{tr^\

where p is a positioe integer^ g? 4= 0, and t is determined in one of the following

ways :

(1) t= X^!^ (y>p),

where q is odd, and the curve has one real branch of the given form both as

X —^+ 00 ajid as X —^ — 00
;

(2) i= ^i/«
{q>p),

tohere q is even, and the curve can have two real branches of the given form as

:<7 —> + 00 and none as x—^ — cc
;

(3) t= (-xy"^ {q>p\

ivh&i'e q is even and the curve can have two real branches of tlie given form as

X — — 00 and none as x —> + oo .

The corresponding asymptote is of course

y=cx+ dti'\l+l,ait-A .

J'his theorem is obviously merely a natural extension of the fundamental

existence theorem, on the lines sketched in Chapter VI, especially §§ 6*40,

6 "60. The details may be left to the reader.
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NOTE A

A PROPERTY OF DIFFERENTIAL COEFFICIENTS

In pursuance of our general policy we define, for instance, the tangent at

P {xq\ to the curve y=f[x), as the limit of the chord PQ when Q —> P. For

this purpose we require merely the existence of/' {xq). The important question

then arises "when does the chord QiQ.^ tend to the tangent at P as ^i —> P
and Qi—^PV^ Similar questions occ\ir in connection with curvature. [Theorems

2-21, 3-23.]

In general, of course, a more stringent condition than the mere existence

of/' {xq) is required. But cases of geometrical interest occur in which actually

no more stringent condition is required for two moving points than for one.

In the example quoted, if ^i —> P and Qc^—^P from opposite sides, then the

chofd ^j^2 does tend to the tangent at P provided only/' {pc^ exists.

The cases that occur all reduce to the following question :
" When can it he

assei'ted that the existence off (Xq) implies that

X\ — X-2

as x\, X'i —> x^)V^ The question is answered in a simple manner by the following

theorem which it is convenient to state and prove here.

If f (0) exists, and
\ Xi ~ X2

\
is neve?' small compared to the smaller of

x,a7idx2*,then
fM^JM^f'lo)^ (A)

OC1-X2

as Xi, X2-^0. In particular if x^ and x^ have always opposite signs then (A)

is certainly true.

Suppose for simplicity that /(0)=0. Then as x^ —> 0, by definition,

since /'(O) exists. Therefore / (.^1) =^1/' (0)+o(.t?i). Similarly,

and therefore fMzfM=:.f' (0) + o W| x.-x^l},
Xi - X2

where x is the larger of
| Xi \

and
| ^2 1 • If "ow, as ^1 , ^2—> 0, |

.a^i - ^2
i

> kx for

some fixed positive value of k, then o{x/\xi- X2\}= o{llk)—> 0, and therefore

X\-X2

* I.e. there exists a constant fc, independent of x^ and x^, such that

a;i-a;2|>A;|a;il, \xi-X2\>k\x2\.
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If in particular .Vi and ^2 have opposite signs, which is the geometrically

interesting case, then
| ^1 - ^^2

1 >
I
-^'i 1 5 I -^i

- -^2
i

> U'2
I

; the extra condition is

automatically satisjfied, and the mere existence of /' (0) is sufficient to ensure

that

NOTE B

THE REMAINDER IN TAYLOR'S THEOREM

We have made use in Note A of the equation /(^')=;:i/'(0) + o(^), or more

generally

/(^)=/(0)+^/(0) + o(^),

as equivalent to the existence of /'(O). Similar equations are used frequently

in this tract when we wish to avoid unnecessary assumptions, for such equations

just contain all the information provided by the hypotheses. In general we
can obtain an 0- or o-result for the remainder in Taylor's expansion with less

assumptions than are required for the use of any of the standard forms of

remainder.

For example, suppose that /(") (0) exists. This is equivalent to the equation

f(n - 1) ( -p) =f(n - 1) (0) + Xf(^) (0) + O {X).

Integrating this equation from to x^ we obtain, by L'Hospital's theorem,

If we repeat, the integration n-'2, times more, we get

r\

in other words we have proved that

For this o-result, >S„ + i
= o(^"), the only hypothesis required is the existence of

/*H(0). In the same way we can prove that for the O-result, Rn + i
= 0{x'^'^'^\

the only hypothesis required is that all the upper and lower derivates of f^) (x)

shoidd he hounded at x=0.

To obtain a result at least as good as either the o-result or the O-result

from, for example, Lagrange's remainder form, we must assume that /("*" ^) (.r)

exists over an interval containing ^^=0.
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